

Rewarding Learning

General Certificate of Secondary Education 2012

Mathematics

Unit T6 Paper 2 (With calculator)

[GMT62]
GMT62
MONDAY 11 JUNE $3.00 \mathrm{pm}-4.15 \mathrm{pm}$

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Write your answers in the spaces provided in the question paper.
Complete in blue or black ink only. Do not write in pencil or with a gel pen.
Answer all thirteen questions.
Any working should be clearly shown in the spaces provided since marks may be awarded for partially correct solutions.
You may use a calculator for this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 50 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
Functional Elements will be assessed in this paper.
Quality of written communication will be assessed in questions 2 and 5.
You should have a calculator, ruler, compasses and protractor.
The Formula Sheet is on page 2.
7412

Formula Sheet

Volume of prism $=$ area of cross section \times length

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$

Sine Rule: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine Rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area of triangle $=\frac{1}{2} a b \sin C$
Quadratic Equation
The solutions of $a x^{2}+b x+c=0$
where $a \neq 0$, are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

\qquad

Answer all questions.
175 grams of flour and 135 millilitres of milk are needed to make 12 biscuits.
(a) How much flour is needed to make 30 biscuits?

Answer \qquad grams [1]
(b) How many biscuits can be made with 175 grams of flour, provided there is enough milk?

Answer \qquad biscuits [1]
(c) A number of biscuits are made using 300 grams of flour.

How much milk is needed?

Answer \qquad millilitres [1]

[Turn over

Quality of written communication will be assessed in this question.
2 (a) Make y the subject in the following equation and simplify the answer.

$$
5 x-7=5-y
$$

Answer $y=$ \qquad
(b) Which of the statements below describes the number $3 n+1$, where n represents any whole number? Explain your answer.
"always even" "always odd" "could be even or odd"
Answer \qquad
because \qquad
 [

3 In a game a square, triangle, hexagon or star will appear on the screen. Some probabilities of the shapes appearing are recorded in the table.

Shape				
Probability	0.14	0.32		0.08

(a) What is the probability of the hexagon appearing?

Answer \qquad
(b) If I play the game 60 times, how many times should I expect the triangle to appear?

Answer \qquad

4 Bob drove to the DIY store from his home. He bought some decorating materials and then returned home.

The distance-time graph below shows his journey.

(a) By looking at the graph, how can you tell that the average speed going to the store was greater than the average speed coming from the store?

Answer \qquad
\qquad
(b) Work out Bob's average speed on his journey to the store.

Give your answer in kilometres per hour.
Answer \qquad km/h [2]
(c) Bob's wife left home at 14.30 and drove to the same store to meet Bob. She drove at an average speed of $24 \mathrm{~km} / \mathrm{h}$.

Draw a graph of her journey on the distance-time graph opposite.
(d) How far from the store was Bob's wife at 14.42?

Answer \qquad km [1]

Quality of written communication will be assessed in this question.
5 Jennifer knows the probability of getting a 2 when a fair dice is thrown is $\frac{1}{6}$
She also knows the probability of getting a prime number when a fair dice is thrown is $\frac{1}{2}$

She concludes then, that the probability of getting a 2 or a prime number on one throw of a fair dice is:

$$
\frac{1}{6}+\frac{1}{2}=\frac{1}{6}+\frac{3}{6}=\frac{4}{6}=\frac{2}{3}
$$

Is Jennifer correct in her conclusion? Explain your answer.
Answer \qquad because \qquad
\qquad

Examiner Only	
Marks	Remark

(a) Draw the image of triangle A after a translation $\binom{-6}{-2}$. Label it B. [2]
(b) Draw the image of triangle A after a rotation of 90° clockwise about the point $(-1,0)$. Label it C.
[2]

7 (a) Simplify:
(i) $a^{4} \times a^{4}$

Answer \qquad
(ii) $\frac{b \times b^{5}}{b^{2}}$
(iii) $12 c^{5} \div 3 c^{7}$
(b) Solve $8 x<6+3 x$

Answer \qquad [2]

Examiner Only	
Marks	Remark

8 Find the total surface area of a solid cylindrical rolling pin with radius 3 cm and length 40 cm .

Give your answer to an appropriate degree of accuracy.

Answer \qquad cm^{2} [4]

9 Each letter, a, b, c and d, represents a length.
Complete the table below indicating whether the expressions could represent length, area, volume or none of these.

$\frac{4 a^{2}}{\sqrt{b^{2}+c^{2}}}$	$\frac{\pi a b c}{a b^{2}}$	$2 \pi b(c+d)$

10 In March the probability of a dry day is $\frac{7}{10}$
If it is dry, the probability that I go for a walk is $\frac{3}{5}$
If it is wet, the probability that I go for a walk is $\frac{1}{5}$
(a) Complete the tree diagram to show all the probabilities

(b) Calculate the probability that I go for a walk on a day in March.

Answer \qquad

11 Simplify $\left(\frac{2 x^{2}}{y}\right)^{5}$
Answer \qquad

Examiner Only	
Marks	Remark

\qquad [4]
Find the probability that the dart lands on the shaded area. Leave your

Examiner Only	
Marks	Remark

12 In a game, a dart is dropped at random onto a square board which has a circle inscribed in it as shown.

Abstract

answer in terms of π.

13 The diagram below shows a sector of a circle of radius 10 cm . Part of this sector is shaded leaving unshaded a sector of a circle of radius x. The angle A is 80°.

The shaded area $B C D E$ is twice the unshaded area $A B E$.

Calculate the radius x of the small sector.

Diagram not drawn accurately

Show your working.

Examiner Only	
Marks	Remark

DO NOT WRITE ON THIS PAGE

Permission to reproduce all copyright material has been applied for
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
QWC	

Total	
Marks	

Examiner Number

