Rewarding Learning

General Certificate of Secondary Education
January 2012

Mathematics

> Module N4 Paper 2 (With calculator)

Higher Tier
[GMN42]
WEDNESDAY 11 JANUARY
10.30 am-11.30 am

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Write your answers in the spaces provided in this question paper.
Answer all nine questions.
Any working should be clearly shown in the spaces provided since marks may be awarded for partially correct solutions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 44 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
You should have a calculator, ruler, compasses, set-square and protractor.
The Formula Sheet is on page 2.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	
Marks	

Formula Sheet

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=$ area of cross section \times length

In any triangle $A B C$
Area of triangle $=\frac{1}{2} a b \sin C$
Sine rule : $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

Quadratic equation:

The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

1 (a) Jane attends both piano and flute lessons on August 31st.
She attends flute lessons every 8 days and piano lessons every 10 days. On what date will she next attend both lessons?

Answer
(b) An electric fire cost $£ 135.66$ including VAT at 20%.

How much VAT was payable on the bill?

Answer $£$ \qquad [3]

2 Fifty-five pupils in Year 11 do an end of year French test.
Their data is recorded in the table below.

Mark	$0-20$	$21-40$	$41-60$	$61-80$	$81-100$
Frequency	6	17	20	9	3

(a) Complete the cumulative frequency table below.

Mark (less than or equal to)	20	40	60	80	100
Cumulative Frequency	6				

(b) Draw a cumulative frequency graph opposite to illustrate this information.

The pass mark for the examination was 52.
(c) Use your graph to estimate the number of students who passed the examination.
\qquad

3 Solve the simultaneous equations $\quad 7 x+3 y=15$
$4 x+3 y=6$

Answer $x=$ \qquad , $y=$ \qquad [2]

4 The diagram shows a pyramid PQRS in which RS is at right angles to the horizontal base $\mathrm{PQR} . \mathrm{PQ}=5 \mathrm{~cm}, \mathrm{QR}=13 \mathrm{~cm}$, angle $\mathrm{PQR}=90^{\circ}$ and angle $\mathrm{RQS}=48^{\circ}$.

Calculate the length SR.

Answer \qquad

5 Expand and simplify $(3 p+2 q)(4 p-7 q)$.

Answer \qquad

6 A field ABCD has straight sides. $\mathrm{AB}=80 \mathrm{~m}$.
An underground pipeline crosses the field from B to D and is 264 m long.
Angle $\mathrm{ABD}=44^{\circ}$.

(a) Calculate the area of ABD .

Answer \qquad m^{2}

A safety shutoff valve is placed at the midpoint of BD.
(b) Calculate the distance from the corner A to the valve.

Answer \qquad m [3]

7 The length of a rectangle, x, is 5 cm more than the breadth. Its diagonal is 12 cm long.

(a) Show that x is a solution of the equation $2 x^{2}-10 x-119=0$
(b) Solve the equation to find the length of the rectangle.

Give your answer correct to 1 decimal place.

Answer $x=$ \qquad cm [3]
\qquad

8 In a circular circus ring, centre N , three wires OA, OB and OC of equal length are attached from $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on the circumference of the ring floor to the top of the tent O . The angles BOC, COA and AOB are each equal to 90° and the angle $\mathrm{ANB}=120^{\circ}$. The chords AB, BC and CA are each 25 m in length.

(a) Explain why angle $\mathrm{NAB}=30^{\circ}$.
(b) Calculate the radius of the circus ring.

Answer \qquad m [3]
(c) Calculate the length of one of the wires.

Answer \qquad m [2]

9 Solve $\frac{2}{x+1}+\frac{6}{3 x-2}=1$

Answer $x=$

Permission to reproduce all copyright material has been applied for In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

