

Mathematics

2011

Unit T3 Higher Tier

[GMT31]

TUESDAY 31 MAY 9.15 am-11.15 am

MARK **SCHEME**

GCSE MATHEMATICS

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The solution to a question gains marks for correct method and marks for accurate working based on this method. The marks awarded for each question are shown in the right hand column and they are prefixed by the letters **M**, **A** and **MA** as appropriate. The key to the mark scheme is given below:

- M indicates marks for correct method.
- A indicates marks for accurate working, whether in calculation, reading from tables, graphs or answers. Accuracy marks may depend on preceding M (method) marks, hence M0 A1 cannot be awarded i.e. where the method is not correct no marks can be given.
- MA indicates marks for combined method and accurate working.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be **followed through** from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

It should be noted that where an error trivialises a question, or changes the nature of the skills being tested, then as a general rule, it would be the case that not more than half the marks for that question or part of that question would be awarded; in some cases the error may be such that no marks would be awarded.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of **following through** their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:

- (a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
- (b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier, only a proportion of the marks will be available (based on the professional judgement of the examiner).

General Marking Advice:

- (i) If the correct answer is seen in the body of the script and the answer given in the answer line is clearly a transcription error, full marks should be awarded.
- (ii) If the answer is missing, but the correct answer is seen in the body of the script, full marks should be awarded.
- (iii) If the correct answer is seen in working but a completely different answer is seen in the answer space, then some marks will be awarded depending on the severity of the error.
- (iv) Work crossed out but not replaced should be marked.
- (v) In general, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered (with no solution offered on the answer line), mark the poorest answer.
- (vi) For methods not provided for in the mark scheme, give as far as possible equivalent marks for equivalent work.
- (vii) Where a follow through mark is indicated on the mark scheme for a particular part question, the marker must ensure that you refer back to the answer of the previous part of the question.
- (viii) Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures seen. E.g. the answer in the mark scheme is 4.65 and the candidate then correctly rounds to 4.7 or 5 on the answer line. Allow full marks for 4.65 seen in the working.
- (ix) Anything in the mark scheme which is in brackets (...) is not required for the mark to be earned, but if present it must be correct.
- (x) For any question, the range of answers given in the mark scheme is inclusive.

Quality of written communication

In GCSE Mathematics, particular questions are identified where candidates must demonstrate the quality of their written communication.

In particular, candidates must:

- (i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear (i.e. comprehension and meaning is clear by using the correct notation and labelling conventions);
- (ii) select and use a form and style of writing appropriate to their purpose and to complex subject matter (i.e. reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning); and
- (iii) organise information clearly and coherently, using specialist vocabulary where appropriate (i.e. mathematical methods and processes used are coherently and clearly organised and appropriate mathematical vocabulary used).

This assessment may be through, for example, an explanation of the geometrical properties of a given shape or, for example, through concise mathematical argument in a multi-step problem.

1	(a) $9 \times \frac{3}{5}$ or $\frac{3}{5} + \frac{3}{5} + 3$	M1	AVAILABLE MARKS
	$\frac{27}{5}$ or $5\frac{2}{5}$ or 5.4	A1	
	6	MA1	
	(b) $\frac{36}{150} \times 100 = 24$	M1, A1	5
2	$0.35 \times 240 = 84 \text{ or } 0.65 \times 240$ (240 - 84 =) £156	M1, A1 MA1	3
3	(a) $C = \pi \times 2.8$ = 8.796	MA1 QWC A1 QWC	
	(b) EITHER 3 Triangles = $3 \times 180 = 540^{\circ}$, triangles dra OR explain Interior = 108° Total = $108 \times 5 =$ (from ext = 72)		4
4	(a) 60 84 36	A1 A1 A1	
	(b) $\frac{1}{2} \times 14 \times 8 = 56$	M1, A1	5
5	(a) $2a + 3(a - 4) = 23$ A1 for correct expression set up/A	A1 for $(a - 4)$ A1 for equation	
	(b) $2a + 3a - 12 = 23$ 5a - 12 = 23 5a = 35	MA1	-
	a = 7	MA1	5
6	(a) correct scales	A1	
	correct heights (award A1 for 3 correct)	A2	
	(b) $5 < w \le 10$	A1	4

7	15% of £62 = £9.30 or $\frac{85}{100} \times 62$	M1, A1	AVAILABLE MARKS
	$Cost = \pounds 52.70$ Ans $\pounds 2.10$	MA1 MA1	4
8	2 points correctly identified2 points accurately plotted	MA1 A1	
	Straight line	A1	3
9	(a) correct points (allow A1 for 3 correct)	A2	
	(b) oblique line with roughly half the points on either side	A1	
	(c) follow pupil's line	A1	
	(d) positive	A1	5
10	(a) $\frac{1}{2} \times \pi \times 10^2$	M1	
	157.1	A1	
	(b) (i) (1, 2)	A1, A1	
	(ii) (7, 3)	A1, A1	6
11	2)84		
	$\begin{array}{c} 2 \overline{)42} \\ 3 \overline{)21} \end{array}$		
	7	M1, A1	
	$2^2 \times 3 \times 7$	A1	3
12	$r^2 = 85^2 + 16^2$	MA1	
	$r^2 = 7481$ r = 86.5	A1 A1	3
13	(a) $\frac{3}{4} \times 100$	MA1	
	4 75	A1	
	(b) 4944 5002 22	MA1	4
	5092.32	MA1	

6527.01

14	(a) $x^2 - 6x + 4x - x^2 - 2x - 24$	- 24	MA1 A1	AVAILABLE MARKS
	(b) 6 <i>n</i>		A1	
	(c) $5n-1$		A1, A1	5
15	Mid-Points	fx		
	1	4		
	3	54		
	5	160		
	7	140		
	9	144		
	11	110		
	fx products		M1	
	612		A1	
	$612 \div 100 = 6.12$		M1, A1	4
16	$S_1 = 85, T_1 = 100$ $S_1 = 100, T_2 = 122$	I	MA1	
	$S_2^{T} = 109, T_2 = 122$ $S_3^{T} = 137, T_3^{T} = 144$	1	MA1	
	$S_4 = 169, T_4 = 169$)		
	5, 12, 13		MA1	3
17	$5.3 \rightarrow 49.29$ $5.4 \rightarrow 50.76$		MA1	
	$5.4 \rightarrow 50.76$ $5.35 \text{ tested} \rightarrow 50.02$	225	MAI MAI	
	5.3		A1	3
	5.35 must be tested	for full marks		
18	(a) $64 = 2^6$			
	$96 = 2^5 \times 3$		A1	
	HCF = 32		A1	
	(b) $21 = 3 \times 7$ 7	$0 = 7 \times 2 \times 5$	Al	
	LCM = 210		A1	4
19	103.5		Al	
	112.5		Al	2

20 (a) $2(2x - 4) + 5(x + 11) = 20$ 4x - 8 + 5x + 55 = 20 9x + 47 = 20 9x = -27	MA1 MA1 MA1	AVAILABLE MARKS
$\begin{array}{l} x = -27 \\ x = -3 \end{array}$	MA1	4
(b) $4x + 3y = 1$ OR $4x + 3y = 1$ 4x - 2y = -4 OR $4x + 3y = 16x - 3y = -6$	MA1	
$y = 1 \qquad OR x = -\frac{1}{2}$	MA1	
$x = -\frac{1}{2} \qquad OR \qquad y = 1$	MA1	3
21 (a) (i) 80	MA1	
(ii) 200 – 186 14	MA1 A1	
(b) median at 80 quartiles at 60 and 110	A1 A1	6
range	A1	0
22 h		
<u> </u>	diagram A1	
$\tan 23^\circ = \frac{h}{60}$	MA1	
$h = 60 \tan 23^{\circ}$ = 25 (.468)	MA1 A1	4
23 88% = £63.36 63.36 ÷ 0.88 or $\frac{63.36}{88} \times 100$ = 72	MA1 MA1 A1	3
24 (a) $3a(3a - y)$ $3(3a^2 - ay)$ or $a(9a - 3y)$ allow A1	A2	
(b) (i) $(x + 3)(x - 2)$	MA1, MA1	
(ii) $x = -3$ and $x = 2$	A1	5
	Total	100

6527.01

GCSE MATHEMATICS SUMMER 2011 UNIT T3 OVERLAY QUESTION 8

GCSE NEW SPEC MATHEMATICS SUMMER 2011 UNIT T3 OVERLAYS QUESTION 9

GCSE NEW SPEC MATHEMATICS SUMMER 2011 UNIT T**3** OVERLAYS QUESTION **21B**

GCSE NEW SPEC MATHEMATICS SUMMER 2011 UNIT T3 OVERLAYS QUESTION 21B

