Rewarding Learning

General Certificate of Secondary Education

Mathematics

Module N6 Paper 1
(Non-calculator)
Higher Tier
[GMN61]
MONDAY 6 JUNE
$1.30 \mathrm{pm}-2.45 \mathrm{pm}$

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Write your answers in the spaces provided in this question paper.
Answer all eighteen questions.
Any working should be clearly shown in the spaces provided since marks may be awarded for partially correct solutions.
You must not use a calculator for this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 56 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
You should have a ruler, compasses, set-square and protractor.
The Formula Sheet is on page 2.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	

6395.07R

Examiner Number

Total	
Marks	

Formula Sheet

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=$ area of cross section \times length

In any triangle $A B C$
Area of triangle $=\frac{1}{2} a b \sin C$
Sine rule : $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

Quadratic equation:

The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

1 Rewrite $c-2=10-b$ to make b the subject.

Examiner Only	
Marks	Remark

Write your answer in its simplest form.

$$
\text { Answer } b=
$$

\qquad [2]
Total Question 1

2 (a) Given that $84 \times 356=29904$, find
(i) $\frac{29904}{8.4}$

Answer \qquad [1]
(ii) 0.84×3560

Answer \qquad [1]
(b) Write down the two numbers which are the square roots of 144

Answer \qquad , \qquad [1]
(c) Estimate $\frac{4.9 \times 30.1}{7.8-3.85}$

Answer \qquad [2]

$3 y=x^{2}+2 \quad y=x^{2}-2 \quad y=x^{2}$
(a) Below are two graphs. Choose the correct equation from the three listed above to match each graph.

Equation: \qquad

Equation: \qquad [2]
(b) Sketch the graph of the remaining equation.

4 (a) Draw a plane of symmetry on the prism below.
(b) Draw a different plane of symmetry on the prism below.

[1]

5 (a) Use the formula $\mathrm{A}=\mathrm{B}^{2}(8-\mathrm{C})$ to find the value of A when $\mathrm{B}=-3$ and $\mathrm{C}=2$.

Answer \qquad [2]
(b) n is an integer. From the expressions

$$
2 n \quad n^{2}+1 \quad 2 n-1 \quad 2 n+2 \quad n-1 \quad 2 n+3
$$

choose
(i) an expression which will always give an even number,

Answer \qquad
(ii) an expression which could give an odd or even number.

Answer \qquad [1]

6 Below is a sketch of a 3-D shape.

FRONT

Draw (a) the plan,
(b) the side elevation.

7 The graph illustrates Pete's journey as he cycled from home to school.

(a) Between what times was he cycling at his fastest average speed?

Answer \qquad and \qquad
(b) He stopped at a shop on the way to school.

Calculate his average speed for the journey between the shop and the school.

Answer \qquad m / s [2]
(c) Pete's sister Jade, left home 4 minutes after him, and travelled to the same school by car.
She arrived in school 1 minute before him.
(i) Show Jade's journey on the graph above.
(ii) How far were they from the school when Jade overtook Pete?

Answer \qquad m [1]

6395.07R

8 Jack divided marbles between himself and Jill in the ratio 4:3

9 Use ruler and compasses to construct the bisector of the angle ABC.
You must show all construction lines.

[2]
Total Question 8
Answer \qquad

Answer \qquad [1]
[2]
(b) $\left(p^{3}\right)^{2}$

Answer \qquad
(a) $\frac{m^{7}}{m \times m^{2}}$

Ans

[2]

10 Simplify

A

[Turn over

11 Terry and Trev counted how many car number plates contained the letter Z . They recorded their results as shown.

Terry		Trev	
Number of cars	Number with Z	Number of cars	Number with Z
100	80	261	207

Whose results give the best estimate of the probability of a car number plate containing the letter Z?
Give a reason for your answer.
Answer \qquad because \qquad
\qquad [2]

Examiner Only	
Marks	Remark

12
(b) Shade the region which contains those points which are both closer to P than to Q , and less than 5 cm from Q .
P and Q are two points which are 7 cm apart.
(a) Using ruler and compasses only, draw the locus of points that are the same distance from P as from Q .

Show all construction lines. -

[Turn over

F
\vdash

13 (a) k, m and n are all lengths.

Examiner Only	
Marks	Remark

(ii) $\frac{1}{2} k \sqrt{m^{2}+n^{2}}$

Answer \qquad [1]
(b) Find the value of x if $\frac{m^{x}}{n(n+k)}$ represents a length.

$$
\begin{equation*}
\text { Answer } x= \tag{1}
\end{equation*}
$$

\qquad Total Question 13

14 (a) Write 0.0000624 in standard form.

Answer \qquad [1]
(b) Write down a fraction which is a recurring decimal.

Answer \qquad
(c) Rationalise the denominator of $\frac{10}{\sqrt{2}}$

Answer \qquad [2]

Total Question 14	

15 A bag contains 5 red grapes and 7 green grapes.
Florence and Ann each choose a grape at random from this bag.
(a) What is the probability that they choose the same colour?

Answer
(b) What is the probability that they choose different colours?

Answer \qquad [1]

16

OABC is a parallelogram.
M is the mid-point of the diagonal OB .
$\overrightarrow{\mathrm{OA}}=2 \mathbf{a}$ and $\overrightarrow{\mathrm{OC}}=2 \mathbf{c}$.
(a) Express $\overrightarrow{\mathrm{OM}}$ in terms of \mathbf{a} and \mathbf{c}.

$$
\text { Answer } \overrightarrow{\mathrm{OM}}=
$$

\qquad [1]
(b) Use vectors to prove that M is also the mid-point of AC .

17 Expand $(7-\sqrt{3})^{2}$ giving your answer in the form $a+b \sqrt{3}$

Answer \qquad [2]

Examiner Only	
Marks	Remark

Total Question 17
[Turn over

18 The diagram shows the graph of $y=f(x)$

(a) Sketch the graph of $y=f(x)-1$ on the axes below.

(b) Sketch the graph of $y=f(x+1)$ on the axes below.

[1]

THIS IS THE END OF THE QUESTION PAPER

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

