Mathematics (Modular)

Summer 2010

Mark Schemes

NORTHERN IRELAND GENERAL CERTIFICATE OF SECONDARY EDUCATION (GCSE) AND NORTHERN IRELAND GENERAL CERTIFICATE OF EDUCATION (GCE)

MARK SCHEMES (2010)

Foreword

Introduction

Mark Schemes are published to assist teachers and students in their preparation for examinations. Through the mark schemes teachers and students will be able to see what examiners are looking for in response to questions and exactly where the marks have been awarded. The publishing of the mark schemes may help to show that examiners are not concerned about finding out what a student does not know but rather with rewarding students for what they do know.

The Purpose of Mark Schemes

Examination papers are set and revised by teams of examiners and revisers appointed by the Council. The teams of examiners and revisers include experienced teachers who are familiar with the level and standards expected of 16- and 18-year-old students in schools and colleges. The job of the examiners is to set the questions and the mark schemes; and the job of the revisers is to review the questions and mark schemes commenting on a large range of issues about which they must be satisfied before the question papers and mark schemes are finalised.

The questions and the mark schemes are developed in association with each other so that the issues of differentiation and positive achievement can be addressed right from the start. Mark schemes therefore are regarded as a part of an integral process which begins with the setting of questions and ends with the marking of the examination.

The main purpose of the mark scheme is to provide a uniform basis for the marking process so that all the markers are following exactly the same instructions and making the same judgements in so far as this is possible. Before marking begins a standardising meeting is held where all the markers are briefed using the mark scheme and samples of the students' work in the form of scripts. Consideration is also given at this stage to any comments on the operational papers received from teachers and their organisations. During this meeting, and up to and including the end of the marking, there is provision for amendments to be made to the mark scheme. What is published represents this final form of the mark scheme.

It is important to recognise that in some cases there may well be other correct responses which are equally acceptable to those published: the mark scheme can only cover those responses which emerged in the examination. There may also be instances where certain judgements may have to be left to the experience of the examiner, for example, where there is no absolute correct response - all teachers will be familiar with making such judgements.

The Council hopes that the mark schemes will be viewed and used in a constructive way as a further support to the teaching and learning processes.

CONTENTS

Page
Foundation Tier
N1: Paper 1 1
N1: Paper 2 5
N2: Paper 1 11
N2: Paper 2 17
N5: Paper 1 23
N5: Paper 2 29
Higher Tier
N3: Paper 1 35
N3: Paper 2 41
N4: Paper 1 47
N4: Paper 2 53
N6: Paper 1 59
N6: Paper 2 65

General Certificate of Secondary Education 2010

Mathematics

Module N1 Paper 1
(With calculator)
Foundation Tier
[GMN11]
TUESDAY 1 JUNE
$9.15 \mathrm{am}-10.00 \mathrm{am}$

MARK
 SCHEME

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right hand column and they are prefixed by the letters \mathbf{M}, \mathbf{A} and MA as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
A indicates marks for accurate working, whether in calculation, readings from tables, graphs or answers.

MA indicates marks for combined method and accurate working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

It should be noted that where an error trivialises a question, or changes the nature of the skills being tested, then as a general rule, it would be the case that not more than half the marks for that question or part of that question would be awarded; in some cases the error may be such that no marks would be awarded.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examiner).

1
(a) 10 means 5 votes
(b) 18 votes A1
(c) $2 \frac{3}{5}$ drawn
(d) $35+18+13+12=78$

2 Isosceles triangle
Rectangle
Trapezium
Rhombus

3
$\begin{array}{lr}\text { (a) } 1133 & \text { M1, A1 } \\ \text { (b) } & \text { (i) } 8413\end{array}$ A2 (Allow A1 for 8431)
(ii) 13

4 (a) $(5,3)$ A1
(b) correct point A1
(c) correct line

5
(a) $1,2,3,4,6,8,12,24$
(b) 5

6 (a) (i) Their sales have increased
A2 (Allow A1 for 5 correct)
A1
(ii) No vertical scale A1
(b) $5,8,8,10,11,12,14,14,16,16,20,24$

Median $=13$

7 (a) -4 A1
(b) 14

$$
\mathrm{A} 1
$$

8 Team A: 80% of $60=\frac{4}{5} \times 60=48$
M1, A1
Team B: $\frac{1}{2}$ of $60=30$
Team B could win by either answering all the remaining 20 questions correctly while Team A do not answer any more than 1 of their remaining 20 questions correctly or answering 19 of the remaining questions while Team A do not answer any of their remaining 20 questions correctly.
(or similar explanation)

9 (a) Area $=8 \times 5$

$$
=40 \mathrm{~cm}^{2}
$$

(b) Perimeter $=8+5+8+5=26 \mathrm{~cm}$
(c) (i) $058^{\circ} \pm 2^{\circ}$
(ii) $122^{\circ} \pm 2^{\circ}$

10 (a) Modal Age $=33$
(b) 12
(c) 6 ladies are above 41 years
$117 x=42$
$x=6$
MA1
$1241+90=131$ MA1
$180-131=49$
$13 \frac{2}{50}$
$=\frac{1}{25}$
A1

General Certificate of Secondary Education 2010

Mathematics

Module N1 Paper 2
(With calculator)
Foundation Tier
[GMN12]
TUESDAY 1 JUNE
10.30 am - 11.15 am

MARK
 SCHEME

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right hand column and they are prefixed by the letters \mathbf{M}, \mathbf{A} and MA as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
A indicates marks for accurate working, whether in calculation, readings from tables, graphs or answers.

MA indicates marks for combined method and accurate working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

It should be noted that where an error trivialises a question, or changes the nature of the skills being tested, then as a general rule, it would be the case that not more than half the marks for that question or part of that question would be awarded; in some cases the error may be such that no marks would be awarded.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examiner).

1 (a) 6000146
(b) twenty thousand four hundred and one
(c) 0.3

The others are all equivalent to $\frac{3}{5}$ (or 0.6 or 60%)
(a) Line graph drawn (4 points - MA1; Line connecting points MA1)
(b) 2.65
(c) Week 5 because there was a decrease in weight

3 (a) metres

A1

(b) grammes
(c) litres
$4 \quad 41$

984

864

5 (a) correct shape
A1
(b) 28, 34
A1
(c) add 6 A1
(d) 76

6 (a) 93

MA1

(b) 48

A1

76 rectangles A1
3 pairs
A1
Correct measurements

8 Joan is correct

- In Mary's triangle the shaded part is much greater than the other two equal unshaded parts; therefore it cannot be one third of the complete triangle
- In Joan's triangle the unshaded parts can be split to make two parts equal to the shaded part; therefore the shaded part is one third of the complete triangle.
- or equivalent correct explanation. A2

9 (a) (i) Range $=4$ seconds
(ii) $\frac{119}{10}=11.9$ seconds

MA1, MA1, A1
(b) $\frac{360^{\circ}}{40}=9^{\circ}$ A1

Angles $108^{\circ} 90^{\circ} 54^{\circ} 108^{\circ}$ A1

Correct pie chart drawn - see overlay

10 Volume $=35 \times 42 \times 60$ MA1

$$
=88200 \mathrm{~cm}^{3}
$$

A1

 A1 units$11 £ 119.90-£ 35=£ 84.90$ MA1
$£ 84.90 \div £ 7.50$ M1
$=11.32$
12 weeks
$122 x-5 y$

$$
\mathrm{A} 1, \mathrm{~A} 1
$$

GCSE MATHEMATICS SUMMER 2010
MODULE N1-2
OVERLAY QUESTION 9

General Certificate of Secondary Education 2010

Mathematics

Module N2 Paper 1
(Non-calculator)
Foundation Tier
[GMN21]
TUESDAY 1 JUNE
$9.15 \mathrm{am}-10.00 \mathrm{am}$

MARK
 SCHEME

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right hand column and they are prefixed by the letters \mathbf{M}, \mathbf{A} and MA as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
A indicates marks for accurate working, whether in calculation, readings from tables, graphs or answers.

MA indicates marks for combined method and accurate working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

It should be noted that where an error trivialises a question, or changes the nature of the skills being tested, then as a general rule, it would be the case that not more than half the marks for that question or part of that question would be awarded; in some cases the error may be such that no marks would be awarded.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examiner).

1 (a) Modal age $=33$
(b) 12
(c) 6 ladies are above 41 years

2 (a) $7 x=42$
$x=6$
(b) $x=28$

(a) $41+90=131$

(b) $180-114=66$

$$
\frac{66}{2}=33
$$

4
(a) $\frac{2}{50}$
$=\frac{1}{25}$
(b) $\frac{13}{15}-\frac{6}{15}$
$=\frac{7}{15}$
(c) $8 \times 36=288$

5 (a) See overlay
7 Points correct (4 Points - MA1)
(b) Seat (Ibiza 1.4)
(c) Line drawn correctly
(d) Correct reading from line
$6 \quad \frac{9}{30}$
$\frac{9}{30} \times 100 \quad$ M1
$=30 \%$

7 (a) 3, 6, 11 (allow A1 for 2 correct)
(b) $4 n-2$
(c) $5(2 \mathrm{~b}+3)$
(a) $2.6 \times 100 \times 100$

MA1
$=26000$
(b) 13.5

9 (a) $54=2 \times 3 \times 3 \times 3$

$$
60=2 \times 2 \times 3 \times 5
$$

LCM $=2 \times 2 \times 3 \times 3 \times 3 \times 5=540$
(b) $2 \times 3=6$
$104 x+8 x+128=500$ (or equivalent)
$12 x=372$
$x=31$
$11 £ 475$
$£ 340$
$£ 525$

MA1
M1, A1
MA1 MA1 MA1 MA1

GCSE MATHEMATICS SUMMER 2010
MODULE N2-1
OVERLAY QUESTION 5

General Certificate of Secondary Education 2010

Mathematics

Module N2 Paper 2
(With calculator)
Foundation Tier
[GMN22]
TUESDAY 1 JUNE
10.30 am - 11.15 am

MARK
 SCHEME

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right hand column and they are prefixed by the letters \mathbf{M}, \mathbf{A} and MA as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
A indicates marks for accurate working, whether in calculation, readings from tables, graphs or answers.

MA indicates marks for combined method and accurate working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

It should be noted that where an error trivialises a question, or changes the nature of the skills being tested, then as a general rule, it would be the case that not more than half the marks for that question or part of that question would be awarded; in some cases the error may be such that no marks would be awarded.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examiner).

10 (a) $(1,2)$
A1, A1
(b) $360 \div 20=18$

M1, A1

11 (a) 45-54

> A1
(b) Mid values $29.5,39.5,49.5,59.5,69.5,79.5$
"fx" values $383.5,4226.5,11583,4224.5,1529,79.5$
$22026 / 448=49.2$ (1 d.p.)
125% of $120=6$
$120+6=126$
5% of $126=6.3$
$126+6.3=132.3$
5% of $132.3=6.615$
$132.3+6.615=138.915$
MA1

13 Curved part $=\pi \times 7.5=23.56 \ldots$.
MA1, A1
Straight part $=15 \quad 23.56 \ldots+15=38.6$

GCSE MATHEMATICS SUMMER 2010
MODULE N2-2
OVERLAY QUESTION 2

General Certificate of Secondary Education 2010

Mathematics
Module N5 Paper 1
(Non-calculator)
Foundation Tier
[GMN51]
MONDAY 7 JUNE

$$
1.30 \mathrm{pm}-2.30 \mathrm{pm}
$$

MARK
 SCHEME

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right hand column and they are prefixed by the letters \mathbf{M}, \mathbf{A} and MA as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
A indicates marks for accurate working, whether in calculation, readings from tables, graphs or answers.

MA indicates marks for combined method and accurate working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

It should be noted that where an error trivialises a question, or changes the nature of the skills being tested, then as a general rule, it would be the case that not more than half the marks for that question or part of that question would be awarded; in some cases the error may be such that no marks would be awarded.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examiner).

1
(a) 3.4

A1
(b) Arrow correctly drawn at 32.35

A1

(c) (i) 4.4
(ii) Arrow correctly drawn at 2.6

2 (a)

(b) (i) cube A1
(ii) cuboid

3 (a) certain
(b) unlikely A1
(c) likely A1
(d) impossible

4 (a) (i) 5
(ii) 300×4

$$
=1200
$$

A1
(b) $70 \div 9 \bumpeq 8$
(c) $2 \times 3+2 \times 5=16$
$16 \times £ 7.00=£ 112$
(d) (i) 8
(ii) -7

5 Equilateral triangle

6 (a) correct points, line
(b) (i) 45 ± 1
(ii) 41 ± 1
$7 \quad$ (a) 5×2.2
$=11$
(b) $\frac{100}{4} \times 7$
$=175$
A1
(c) $60 \times \frac{8}{5}$
$=96$
$8 \quad$ (a) (i) 11
(ii) 5
(b) - and \times
(c) $5 \times(6-2)+2$
$9 \quad 10$
24

10 No, with example provided e.g. $1+2+3=6$ which is even

11 (a) (i) $27 / 30$
(ii) $2 / 29$

A1
(b) $\mathrm{No}, 27 / 30$ is 90% A1

A1

General Certificate of Secondary Education 2010

Mathematics

Module N5 Paper 2
(With calculator)
Foundation Tier
[GMN52]
MONDAY 7 JUNE
$2.45 \mathrm{pm}-3.45 \mathrm{pm}$

MARK
 SCHEME

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right hand column and they are prefixed by the letters \mathbf{M}, \mathbf{A} and MA as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
A indicates marks for accurate working, whether in calculation, readings from tables, graphs or answers.

MA indicates marks for combined method and accurate working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

It should be noted that where an error trivialises a question, or changes the nature of the skills being tested, then as a general rule, it would be the case that not more than half the marks for that question or part of that question would be awarded; in some cases the error may be such that no marks would be awarded.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examiner).

1 (a) line
A1
(b) reflection
(allow [A1], wrong line)
A2
(c) (i) square
(ii) square

2 (a) C 52 mph
(b) $\mathrm{A} 850 l$
(c) $\mathrm{B} 37.6^{\circ} \mathrm{C}$

3 (a) Black

A1

(b) 1 or 3
(c) 4
$4 \quad 52 \times 1.30=67.60$ extra $£ 12.80$

M1, A1 MA1

5 (a)

6	0	2
6	3	2

(b) Horizontal line in correct position A1

Vertical line in correct position A1
(c) shaded square

6 (a) Impossible
(b) Possible
(c) Impossible

7 (a) $250+50 \times 6$
550
(b) 480
(c) number of payments (months)
(d) $800-380=420$
$420 \div 6$

8 (a) Table of paired outcomes
(b) $11 / 24$

9 (a) $47500 \div 1.25$
$=£ 38000$
(b) $42000-5000=37000$
22% of $37000=£ 8140$ MA1 $42000-8140=£ 33860$ MA1

10 always odd
$2 n$ is always even, therefore $2 n+3$ is always odd and 5 (or an odd) times an odd number is always odd
or
$10 n+15,10 n$ is even and even +15 is always odd
$11 \quad$ Area $=\frac{1}{2}(7.1+9.6) \times 4.3$

$$
=35.905
$$

Answer 36 or 35.9
$1299 \div 15=6.6$
$6.6 \times 4=26.4$

13 (a) 21,6
(b) See overlay correct pointsA1
smooth curve

GCSE MATHEMATICS SUMMER 2010 MODULE N5-2 OVERLAY QUESTION 13

General Certificate of Secondary Education 2010

Mathematics
Module N3 Paper 1
(Non-calculator)
Higher Tier
[GMN31]
TUESDAY 1 JUNE
9.15 am - 10.15 am

MARK
 SCHEME

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right hand column and they are prefixed by the letters \mathbf{M}, \mathbf{A} and MA as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
A indicates marks for accurate working, whether in calculation, readings from tables, graphs or answers.

MA indicates marks for combined method and accurate working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

It should be noted that where an error trivialises a question, or changes the nature of the skills being tested, then as a general rule, it would be the case that not more than half the marks for that question or part of that question would be awarded; in some cases the error may be such that no marks would be awarded.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examiner).

1 (a) See overlay
7 Points correct (allow MA1 for 4 points correct)
(b) Seat (Ibiza 1.4)
(c) Line drawn correctly A1
(d) Correct reading from line
$2 \frac{9}{30}$
$\frac{9}{30} \times 100$

$$
=30 \%
$$

(b) 13.5
A1

5
(a) 3, 6, 11 (allow A1 for 2 correct)
(b) $4 n-2$
$4 \quad$ (a) $2.6 \times 100 \times 100$

$$
=26000
$$

(a) $\mathrm{AOB}=360 / 8$

$$
=45
$$

(b) $\mathrm{ABO}=(180-45) / 2=67.5$

$$
\text { So } \mathrm{ABC}=2 \times 67.5=135
$$

$6 \quad x^{2}-x+7 x-7$

$$
x^{2}+6 x-7
$$

$7 \quad 54=2 \times 3 \times 3 \times 3$ MA1
$60=2 \times 2 \times 3 \times 5$ MA1
LCM $=2 \times 2 \times 3 \times 3 \times 3 \times 5=540$ MA1

$754=2 \times 3 \times 3 \times 3$	MA1
$60=2 \times 2 \times 3 \times 5$	MA1
LCM $=2 \times 2 \times 3 \times 3 \times 3 \times 5=540$	MA1

$8 \quad 4 x+8 x+128=500$ (or equivalent)
M1, A1
$12 x=372$
MA1
$x=31$
MA1
$9 £ 475$
£340
$£ 525$
$10 \frac{4 x+3+12 x-10}{10}=\frac{65}{10}$ or $\frac{13}{2}$
$4 x+3+12 x-10=65$ MA1
$16 x=72$ MA1
$x=\frac{9}{2}$
MA1

11 (a) gradient $=(9-1) /(2-0)=4$

$$
y=4 x+1
$$

M1, A1
(b) Length $=\sqrt{5^{2}+12^{2}}$

$$
=\sqrt{(25+144)}=\sqrt{169}=13
$$

$12 \frac{49}{8} \div \frac{7}{3}$
$\frac{49}{8} \times \frac{3}{7}=\frac{21}{8}($ or equivalent $)$
$2 \frac{5}{8}$

General Certificate of Secondary Education 2010

Mathematics
Module N3 Paper 2
(With calculator)
Higher Tier
[GMN32]
TUESDAY 1 JUNE
10.30 am - 11.30 am

MARK
 SCHEME

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right hand column and they are prefixed by the letters \mathbf{M}, \mathbf{A} and MA as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
A indicates marks for accurate working, whether in calculation, readings from tables, graphs or answers.

MA indicates marks for combined method and accurate working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

It should be noted that where an error trivialises a question, or changes the nature of the skills being tested, then as a general rule, it would be the case that not more than half the marks for that question or part of that question would be awarded; in some cases the error may be such that no marks would be awarded.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examiner).
1 one correct point MA1second correct pointA1correct line
A1
2 axes, labels A1
frequency diagram A2$\left.3 \begin{array}{ll}\text { Ventra }-£ 3.84 \\ & \text { Viva }-£ 3.20\end{array}\right\} \begin{aligned} & \text { 1st value correct } \\ & \text { 2nd value correct }\end{aligned}$M1, A1
MA1Viva is betterMA14 Square and Rhombus
A1, A25 (a) $5 x-14=3 x+38$A1
(b) $5 x-3 x=38+14$ MA1
$2 x=52$ MA1

$$
x=26
$$

A1
$6(1,2)$
A1, A1
(a) $45-54$
(b) Mid values $29.5,39.5,49.5,59.5,69.5,79.5$
"fx" values $\quad 383.5,4226.5,11583,4224.5,1529,79.5$
$22026 / 448=49.2$ (1 d.p.) M1, A1

8 (a) $£ 1.28-£ 1.04=24$ pence

(b) It is less because the inter-quartile range for England is 10

GCSE MATHEMATICS SUMMER 2010
MODULE N3-2
OVERLAYS QUESTION 11

General Certificate of Secondary Education 2010

Mathematics
Module N4 Paper 1
(Non-calculator)
Higher Tier
[GMN41]
TUESDAY 1 JUNE
9.15 am - 10.15 am

MARK
 SCHEME

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right hand column and they are prefixed by the letters \mathbf{M}, \mathbf{A} and MA as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
A indicates marks for accurate working, whether in calculation, readings from tables, graphs or answers.

MA indicates marks for combined method and accurate working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

It should be noted that where an error trivialises a question, or changes the nature of the skills being tested, then as a general rule, it would be the case that not more than half the marks for that question or part of that question would be awarded; in some cases the error may be such that no marks would be awarded.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examiner).
$1 \frac{4 x+3+12 x-10}{10}=\frac{65}{10}$ or $\frac{13}{2}$
$4 x+3+12 x-10=65$
$16 x=72$
$x=\frac{9}{2}$

2 (a) gradient $=(9-1) /(2-0)=4$

$$
y=4 x+1
$$

(b) Length $=\sqrt{5^{2}+12^{2}}$

$$
=\sqrt{(25+144)}=\sqrt{169}=13
$$

(c) $y=-\frac{1}{5} x+2$

3 (a) (i) 0
(ii) -4
(b) $\frac{1}{(\sqrt[4]{16})^{3}}$
$=\frac{1}{8}$

4 (a) See overlay
correct side of $y=2 x+4$
correct side of $y=8-x$
correct side of $y=2$
(b) (i) - 1
(ii) $(6,2)$

22

6 Angle $\mathrm{AOC}=2 \times$ angle ABC (angle at centre twice angle at circumference) Reflex angle AOC $=2 \times$ angle ADC (same reason)
$\mathrm{AOC}+$ reflex $\mathrm{AOC}=360^{\circ}=2(\mathrm{ABC}+\mathrm{ADC})$ MAI

So $\mathrm{ABC}+\mathrm{ADC}=180^{\circ}$

7 (a) $0.1<$ decimal $<0.11111 \ldots$ or $\frac{1}{10}<$ fraction $<\frac{1}{9}$ such as $\frac{19}{180}$
(b) suitable value e.g. $\sqrt{85}, \sqrt{99}, 3 \pi$

8 Central section correct

9 (a) Same number of workers in each supermarket will result in mean being $£ 180$

A different number of workers will not produce this mean
(b) (i) The 14 selected could be all boys or all girls
(ii) Suitable method
$10 x^{2}+2(2 x-9)^{2}=243 \quad$ MA1
$x^{2}+2\left(4 x^{2}-36 x+81\right)=243$ MA1
$9 x^{2}-72 x-81=0$ or $x^{2}-8 x-9=0$ A1
$9(x-9)(x+1)=0$ or $(x-9)(x+1)=0$
$x=9$ and $y=9$
$x=-1$ and $y=-11$

GCSE MATHEMATICS SUMMER 2010
MODULE N4-1
OVERLAYS QUESTION 4

General Certificate of Secondary Education 2010

Mathematics
Module N4 Paper 2
(With calculator)
Higher Tier
[GMN42]
TUESDAY 1 JUNE
10.30 am - 11.30 am

MARK
 SCHEME

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right hand column and they are prefixed by the letters \mathbf{M}, \mathbf{A} and MA as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
A indicates marks for accurate working, whether in calculation, readings from tables, graphs or answers.

MA indicates marks for combined method and accurate working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

It should be noted that where an error trivialises a question, or changes the nature of the skills being tested, then as a general rule, it would be the case that not more than half the marks for that question or part of that question would be awarded; in some cases the error may be such that no marks would be awarded.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examiner).

1 (a) Cumulative Number of Men

$$
\text { (4) } 32,81,109,117,120 \quad \mathrm{~A} 1
$$

(b) See overlay 6 points correct (allow MA1 for 4 points correct)
(c) Reading from graph
(d) $4+(120-$ correct reading from graph $)=$ number retested

2 (a) $£ 1.28-£ 1.04=24$ pence
(b) It is less because the inter-quartile range for England is 10
A1

3 Suitable reason

A1

$4 \quad 115 \%=£ 49.22$
$100 \%=\frac{49.22}{115} \times 100$ M1
$£ 42.80$
$530 \times 8=240 \mathrm{~cm}^{3}$
M1, A1, A1(units)

6
(a) $\sin 62^{\circ}=\mathrm{AC} / 25$
$25 \sin 62^{\circ}=\mathrm{AC}$

$$
\mathrm{AC} \quad=22.07(368 \ldots)
$$

(b) $\mathrm{DC}^{2}=15^{2}+22.07^{2}-2(15)(22.07) \cos 38^{\circ}$

$$
=190.34298
$$

7 (a) $10 \times 3+15 \times 0.4$

$$
=30+6
$$

$$
=36
$$

(b) $20 \times 1.3+20 \times 2.4+5 \times 2=84$

$$
\frac{1}{3} \text { of } 84=28
$$

(c) (i) $\frac{5}{30}=\frac{1}{6}$

$$
\frac{1}{6} \text { of } 120=20
$$

(ii) $\frac{1}{6}$ of $48=8$

8 (a) $6 x^{2}-15 x y+8 x y-20 y^{2}$

$$
6 x^{2}-7 x y-20 y^{2}
$$

(b) $\frac{x(x+3)}{2\left(x^{2}-9\right)}$

$$
\frac{x(x+3)}{2(x+3)(x-3)}
$$

$$
\frac{x}{2(x-3)}
$$

(c) $(4 x-3 y)(2 x-y)$

9 Angle required CPR M1

$$
\begin{array}{ll}
\mathrm{PR}^{2} \quad=9^{2}+7^{2} \\
\mathrm{PR} \quad=\sqrt{130} & \text { MA1 } \\
\text { Tan } \mathrm{CPR}=\frac{4}{\sqrt{130}} & \\
\mathrm{CPR}=19.33 & \text { MA1 }
\end{array}
$$

e.g. to prove rational - length π and breadth $6-\pi$: perimeter 12

GCSE MATHEMATICS SUMMER 2010
MODULE N4-2
OVERLAY QUESTION 1

General Certificate of Secondary Education 2010

Mathematics

Module N6 Paper 1
(Non-calculator)
Higher Tier
[GMN61]
MONDAY 7 JUNE

1.30 pm - 2.45 pm

MARK
 SCHEME

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right hand column and they are prefixed by the letters \mathbf{M}, \mathbf{A} and MA as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
A indicates marks for accurate working, whether in calculation, readings from tables, graphs or answers.

MA indicates marks for combined method and accurate working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

It should be noted that where an error trivialises a question, or changes the nature of the skills being tested, then as a general rule, it would be the case that not more than half the marks for that question or part of that question would be awarded; in some cases the error may be such that no marks would be awarded.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examiner).
$10.35+0.2+0.2=0.75$
MA1
$1-0.75=0.25$
$2 \frac{15(2-10)}{6}$
$\frac{-120}{6}$
-20
A1

3
(a) $\frac{8 \times 20}{6-4}$

80
(b) (i) 30240
(ii) 3.6

4

5 (a) $40 \mathrm{~km} / \mathrm{h}$
(b) 8 am and 8.30 am
(c) Line through $(8.10 \mathrm{am}, 30)$ and $(8.40 \mathrm{am}, 5 \mathrm{~km})$

Point of intersection
M1, A1

6 (a) Correct translation
MA1
(b) Correct line A1

Three points correct A1
(c) Correct rotation M1

Three points correct A1

7 (a) $x=7-y$
(b) (i) p^{7}
(ii) $\frac{1}{p^{6}}$ or $p^{-6} \quad \mathrm{~A} 1$
(iii) p^{8}
$8 \quad \frac{18}{100} \times 4500=810$ M1, A1

9 (a) False with a given example
(b) True with a given example

11 (a) $2.56 \times 10^{10} \div\left(1.28 \times 10^{8}\right)$
(b) (i) 1.28
(ii) a and b must be numbers that add up to 3

12 (a)
(b) $\frac{2}{5} \times \frac{1}{2}=\frac{2}{10}\left(\frac{1}{5}\right)$

13 Area $=\pi \times 6^{2} \times \frac{110}{360}$

$$
=11 \pi \mathrm{~cm}^{2}
$$

14 (a) $-3 \mathbf{h}+2 \mathbf{g}$ MA1
(b) $1.5 \mathbf{h}+\mathbf{g}$ MA1
(c) $0.75 \mathbf{h}+0.5 \mathbf{g}+1.5 \mathbf{h}-\mathbf{g}$
$2.25 \mathbf{h}-0.5 \mathrm{~g}$

15 (a) $1000 x=342.424242 \ldots \ldots$

$$
10 x=3.424242 \ldots \ldots
$$

$$
\begin{aligned}
990 x & =339 \\
x & =\frac{339}{990}=\left(\frac{113}{330}\right)
\end{aligned}
$$

(b) $3-4 \sqrt{3}-4 \sqrt{3}+16$
$16 \mathrm{P}(\mathrm{WW})=\frac{n}{4} \times \frac{n-1}{3}=\frac{1}{2}$

$$
\begin{aligned}
& n(n-1)=6 \\
& n^{2}-n-6=0 \\
& (n-3)(n+2)=0
\end{aligned}
$$

$$
n=3 \quad \text { MA2 }
$$

Answer 0

General Certificate of Secondary Education 2010

Mathematics
Module N6 Paper 2
(With calculator)
Higher Tier
[GMN62]
MONDAY 7 JUNE
$3.00 \mathrm{pm}-4.15 \mathrm{pm}$

MARK
 SCHEME

Introduction

The mark scheme normally provides the most popular solution to each question. Other solutions given by candidates are evaluated and credit given as appropriate; these alternative methods are not usually illustrated in the published mark scheme.

The marks awarded for each question are shown in the right hand column and they are prefixed by the letters \mathbf{M}, \mathbf{A} and MA as appropriate. The key to the mark scheme is given below:

M indicates marks for correct method.
A indicates marks for accurate working, whether in calculation, readings from tables, graphs or answers.

MA indicates marks for combined method and accurate working.
The solution to a question gains marks for correct method and marks for an accurate working based on this method. Where the method is not correct no marks can be given.

A later part of a question may require a candidate to use an answer obtained from an earlier part of the same question. A candidate who gets the wrong answer to the earlier part and goes on to the later part is naturally unaware that the wrong data is being used and is actually undertaking the solution of a parallel problem from the point at which the error occurred. If such a candidate continues to apply correct method, then the candidate's individual working must be followed through from the error. If no further errors are made, then the candidate is penalised only for the initial error. Solutions containing two or more working or transcription errors are treated in the same way. This process is usually referred to as "follow-through marking" and allows a candidate to gain credit for that part of a solution which follows a working or transcription error.

It should be noted that where an error trivialises a question, or changes the nature of the skills being tested, then as a general rule, it would be the case that not more than half the marks for that question or part of that question would be awarded; in some cases the error may be such that no marks would be awarded.

Positive marking:

It is our intention to reward candidates for any demonstration of relevant knowledge, skills or understanding. For this reason we adopt a policy of following through their answers, that is, having penalised a candidate for an error, we mark the succeeding parts of the question using the candidate's value or answers and award marks accordingly.

Some common examples of this occur in the following cases:
(a) a numerical error in one entry in a table of values might lead to several answers being incorrect, but these might not be essentially separate errors;
(b) readings taken from candidates' inaccurate graphs may not agree with the answers expected but might be consistent with the graphs drawn.

When the candidate misreads a question in such a way as to make the question easier only a proportion of the marks will be available (based on the professional judgement of the examiner).
(a) See overlay

Correct scale factor
6 points correct
MA1
(b) $210 / 60=3.5$

3 hours 30 minutes

2 (a) 0.3204

A1

(b) $0.5,-0.5$
(c) always odd
$2 n$ is always even, therefore $2 n+3$ is always odd and 5 (or an odd) times an odd number is always odd
or
$10 n+15,10 n$ is even and even +15 is always odd

3 (a) one plane drawn
(b) second plane drawn
$442000-5000=37000 \quad$ MA1
22% of $37000=£ 8140 \quad$ MA1
$42000-8140=£ 33860$

5 The total percentage is 106% instead of 100%
$6 \quad$ Area of trapezium $=\frac{1}{2}(26+36) \times 14=434 \mathrm{~cm}^{2}$
Area of rectangle $=36 \times 28=1008$
Total area $=1442$
MA1

7 See overlay
Circle radius 5 cm centre S MA1
Bisector of ST drawn MA1
Correct region shaded MA1

8 (a) 21, 6
A1, A1
(b) See overlay $\begin{aligned} & \text { A1 } \\ & \text { correct points }\end{aligned}$ smooth curve A1

$9 \quad$| $99 \div 15=6.6$ |
| :--- |
| $6.6 \times 4=26.4 \mathrm{~km}$ |

MA1 MA1
$104 x \leq 5$
$x \leq \frac{5}{4}$

11 Volume $=60 \times 43=2580$
Density $=\frac{1400}{2580}$ or $0.542635 \ldots$.

$$
=0.54 \text { or } 0.543 \text { or } 0.5
$$

12 (a) (i)

	0.45
	0.53
	0.42
502	

(ii) George because his relative frequency is furthest away from 0.5
(b) C

13 (a) $S=k T^{3}$

$$
\begin{aligned}
& 54=k \times 6^{3} \\
& k=\frac{54}{216}=\frac{1}{4} \\
& S=\frac{\mathrm{T}^{3}}{4}
\end{aligned}
$$

(b) $128=\frac{\mathrm{T}^{3}}{4}$

$$
\mathrm{T}=8
$$

MA1

14 Curved Area $=\pi \mathrm{dh}=\pi \times 14 \times 32$

$$
=1407.433(509 \ldots) \mathrm{cm}^{2}
$$

$157 x y-14=5 y+2 x$
MA1
$7 x y-2 x=5 y+14$ MA1
$x(7 y-2)=5 y+14$
$x=\frac{5 y+14}{7 y-2}$
$16 \quad \frac{12}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=4 \sqrt{3}$
$17 \quad \frac{6}{18} \times \frac{6}{17}+\frac{6}{18} \times \frac{6}{17}$
$=\frac{4}{17}$
$182 \pi x^{2}+2 \pi x \times 3 x=4 \pi r^{2}$

$$
8 \pi x^{2}=4 \pi r^{2} \text { or } 2 x^{2}=r^{2}
$$ A1

$$
r=\sqrt{2} x \text { or } \sqrt{2 x^{2}}
$$

GCSE MATHEMATICS SUMMER 2010
MODULE N6-2
OVERLAY QUESTION 1

GCSE MATHEMATICS SUMMER 2010 MODULE N6-2 OVERLAY QUESTION 7

GCSE MATHEMATICS SUMMER 2010

 MODULE N6-2

