O2
Rewarding Learning

General Certificate of Secondary Education

Mathematics

Module N4 Paper 2
(With calculator)
Higher Tier
[GMN42]
MONDAY 18 MAY
$2.45 \mathrm{pm}-3.45 \mathrm{pm}$

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Write your answers in the spaces provided in this question paper.
Answer all nine questions.
Any working should be clearly shown in the spaces provided since marks may be awarded for partially correct solutions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 44 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
You should have a calculator, ruler, compasses, set-square and protractor.
The Formula Sheet is on page 2.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	

Total Marks	

Formula Sheet

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=$ area of cross section \times length

In any triangle $\boldsymbol{A B C}$

Area of triangle $=\frac{1}{2} a b \sin C$
Sine rule: $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

Quadratic equation:

The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

1 Calculate the volume of a sphere of diameter 70 cm .

Answer \qquad [3]

2 Peter is a gardener. He recorded how much money he earned each week for 40 weeks.

Money in $£(\boldsymbol{m})$	Frequency	Money in $£$	Cumulative Frequency
$180 \leq m<200$	4	<200	4
$200 \leq m<220$	7	<220	11
$220 \leq m<240$	12	<240	
$240 \leq m<260$	9		
$260 \leq m<280$	5		
$280 \leq m<300$	2		
$300 \leq m<320$	1		

(a) Complete the table.
(b) Draw the cumulative frequency graph on the opposite page.
(c) Use the graph to estimate
(i) the median,
\qquad
(ii) the inter-quartile range,

Answer $£$ \qquad
(iii) in how many weeks Peter earned more than $£ 225$.

Answer \qquad weeks [2]
(d) The lowest amount Peter earned was $£ 185$ and the highest amount was £315.

Draw a box plot opposite to illustrate Peter's earnings.
(ii)

																								-

3 Explain the difference between discrete data and continuous data and give one example of each.

Diagram not drawn accurately

ABCD is a quadrilateral.
$\mathrm{AB}=8 \mathrm{~cm}, \mathrm{AD}=10 \mathrm{~cm}, \mathrm{CD}=5 \mathrm{~cm}$.
Angle $\mathrm{BAD}=80^{\circ}$ and angle $\mathrm{BDC}=22^{\circ}$.
Calculate
(a) the length of BD ,

Answer \qquad cm [3]
(b) the area of triangle BCD.

Answer \qquad cm^{2} [2]

5 A man walks $x \mathrm{~km}$ East and then $(x+8) \mathrm{km}$ North. He is now 12 km from his starting point.
(a) Show that x satisfies the equation $x^{2}+8 x-40=0$
(b) Solve the equation to find x, giving your answer correct to 3 significant figures.
\qquad [3]

6 (a)

ABC and BDE are similar triangles.
$\mathrm{BE}=14 \mathrm{~cm}, \mathrm{BC}=24 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}$
Find the length of DE.

Answer \qquad cm [2]

Diagram not drawn accurately
(b) The diagram below shows the frustum of a cone.

The circular top of the frustum, centre E , is of radius 14 cm .

Using the answer found in part (a), find the volume of the frustum of the cone.

Answer \qquad cm^{3} [4]

7 The equation $3 x^{2}=\frac{1}{\mathrm{~N}}$ can have rational or irrational solutions.
(a) Write down a value for N which gives rational solutions.

$$
\text { Answer } \mathrm{N}=
$$

\qquad
(b) Write down a value for N which gives irrational solutions.

$$
\text { Answer } \mathrm{N}=
$$

\qquad
(c) Write down a value for N which gives no solutions.

$$
\text { Answer } \mathrm{N}=
$$

8 Given that $(x+b)^{2} \equiv x^{2}-10 x+c$, find the values of b and c.

Answer $b=$ \qquad [3]
\qquad

$$
c=
$$

ABCDEF, GHIJKL, the base and top of the prism, are regular hexagons.
$\mathrm{AB}=20 \mathrm{~cm}, \mathrm{AG}=30 \mathrm{~cm}$.
Calculate the angle between AJ and the base ABCDEF.
\qquad ${ }^{\circ}$ [4]
P郘

THIS IS THE END OF THE QUESTION PAPER

