ASSESSMENT and
OUALIFICATIONS

General Certificate of Secondary Education

Mathematics 3301 Specification A

Paper 2 Higher Tier

Mark Scheme
 2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

The following abbreviations are used on the mark scheme:

M Method marks awarded for a correct method.
A Accuracy marks awarded when following on from a correct method. It is not necessary always to see the method. This can be implied.

B Marks awarded independent of method.
M dep A method mark which is dependent on a previous method mark being awarded.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special Case. Marks awarded for a common misinterpretation which has some mathematical worth.
oe \quad Or equivalent.
eeoo Each error or omission.

Paper 2H

1	$5 x>7,5 x>10-3$	M1	Accept $5 x \geq 7$ or $5 x \geq 10-3$
	$x>\frac{7}{5}$	A1	oe eg Accept $x>1.4$ or $x>1 \frac{2}{5}, \frac{7}{5}<x$
			$x=1.4$ after correct answer seen is incorrect further work so A0. $5 x>13 \Rightarrow x>2.6 ~ S C 1 ~$

$\mathbf{2}$	Attempt to add at least 12 correct values from Stem and Leaf	M1	Values used must indicate that the candidates understands the stem and leaf notation.
270	A1		
	$($ Mean $=)$ 'their $270 ' \div 30$	M1dep	Must divide by 30
9	A1	No follow through	

3(a)	Plot (50, 0.4)	B1	1 mm tolerance
3(b)	27	B1	
3(c)	Yes, stated or implied, with a reason that uses a valid numerical value	B2	eg if fair expect 15 As in 60 spins Yes because 27 out of 60 is bigger than a $\frac{1}{4}$ B1 for yes, stated or implied, with a reason that is valid but does not use numerical values.
3(d)	$1000 \times(0.3$ to 0.5$)$	M1	
	300 to 500	A1	
3(e)	$0.3+0.4$	M1	
	0.7	A1	oe

4	Sporty bar $3.4 \times \frac{100}{10.3}$	M1	oe
	$33 .(\ldots .)$.	A1	
	Fruity bar $17.4 \times \frac{62.6}{100}$	M1	oe
	10.9	A1	Any correctly rounded accuracy 10.8924. Accept 11 with working.

$\mathbf{5}$	Total reduction $£ 6+£ 1(=£ 7)$	M1	25% of $£ 4=£ 1,25 \%$ of $40 \%=10 \%$ 75% of $40 \%=30 \%$
	Hence Jill plus justification eg $£ 7$ is 70% of $£ 10$	A1	$60 \%+10 \%=70 \%, 85 \%$ off $£ 10=£ 1.50$

6	$1.7 \div 250$	M1	ie Digits '17' \div digits '25' eg $1700 \div 250$
	0.0068	A1	6.8 accept answer with digits ' 68 ' if consistent with units used. eg $0.068 \mathrm{~kg} / \mathrm{cl}$
$/ \mathrm{cm}^{3}$	B1	Units consistent with working ieallow g/cm supports it working and answer NB If M0 awarded all B1 for any units of density.	

7	$400-2 \times 80$	B1	240
	$2 \pi r$ or πd or $\pi r=$ anything except 400	M1	
	$240 \div \pi$	M1dep	$240 \div 2 \pi(=38.2)$
	$76.4,76.39 \ldots .$.	A1	76 with working or 80 with working SC if 80 misread as total straight length then answer in range $101.8-101.9$ SC2

$\left.\begin{array}{|c|l|c|l|}\hline \text { 8(a) } & 0.007 & \text { B1 } & \\ \hline \mathbf{8 (b) (i) ~} & 0.9119215(052) & \mathrm{B} 1 & \\ \hline \mathbf{8 (b) (i i) ~} & \begin{array}{l}0.9,0.91,0.912, \\ 9 \text { or } 9.1 \text { or } 9.12 \times 10^{-1}\end{array} & \text { B1ft } & \begin{array}{l}\mathrm{ft} \text { their answer for (b)(i) to 1, 2 or 3sf } \\ \text { eg Gradians } \\ \text { (b)(i) } 0.02221673729 \quad \mathrm{~B} 0 \\ \text { (b)(ii) } 0.02,2 \times 10^{-2}, \text { etc }\end{array} \\ \hline \text { B1 ft }\end{array}\right\}$

9	Sight of 1.072	B1	7.2% of $2000=144$
	$(2000) \times$ 'their $1.072{ }^{10}$	M1 A1	Their 1.072 must be 1.72 or 1.0072 Calculating at least 5 intermediate values correctly 2144, 2298.37 (368), $2463.85(0496)$, 2641.25 (.247732), 2831.42 (.417568) M1 All 10 correct A1 3035.28(.279633), 3253.82(.819767), 3488.09 (.09479), 3739.24(.237615) 4008.46(.462723) No penalty for rounding or truncating to nearest pound or 1 decimal place. Truncated values 2144, 2298, 2463, 2640, 2830, 3033, 3251, 3485, 3735, 4004 (4003.82) Rounded values 2144, 2298, 2463, 2640, 2830, 3034, 3252, 3486, 3737, 4006 (4006.06) No penalty for incorrect money notation eg $4008.5>2 \times 2000$
	Yes 4008.(46) or 2.004(2..)	A1ft	ft if only one error made and relevant conclusion drawn. Accept $1.072^{10}>2$ for $3 / 4$ marks NB student who takes 2000 as year 1 gets to 3739 for year 10 and says 'no' $2 / 4$ SC $2000 \times 1.072^{9} 2 / 4$ marks (B1, M1)

10(a)	$4 x+12=9 x-18$	M1	Allow one error
	$5 x=30,-30=-5 x$	A1ft	ft if M1 awarded and equation is in form $a x=b$ with no further errors
	$x=6$	A1ft	Follow through only if M1 awarded for fully correct first line and one error made in rearranging so A0 awarded, and their equation of form $a x=b$ is solved correctly
10(b)	Attempt to balance x or y and eliminate by adding or subtracting	M1	$\text { eg } \begin{aligned} & 15 x+9 y=18 \\ & 15 x-35 y=95 \end{aligned}$ Followed by an attempt to subtract $44 y=-77$ or $\begin{gathered} \text { eg } 35 x+21 y=42 \\ 9 x-21 y=57 \end{gathered}$ Followed by an attempt to add $44 x=99$ Award M1 for attempt to rearrange one equation and substitute into the other
	Solving resulting equation to find $x=2.25$ or $y=-1.75$	A1	
	Attempt to eliminate other variable or substitution of found value into an equation	M1	NB Could start again eg $\quad 11.25+3 y=6,5 x-5.25=6$
	Solving to find other value $y=-1.75$ or $x=2.25$	A1	

11(a)	$(x+4)^{2}$	M1	
	$a=4, b=-21$	A1	Do not award if b given as 21
11(a) Alt.	$\begin{aligned} & =x^{2}+2 a x+a^{2}+b \text { and } \\ & 8=2 a \text { or }-5=a^{2}+b \end{aligned}$	M1	
	$a=4, b=-21$	A1	
11(b)	$x= \pm \sqrt{ } 21 \pm 4$ or $x= \pm \sqrt{ } 21-4$	M1	ft their ' a ' if solvable for M1 and A1 T\&I M0 unless both answers given.
	$x=0.58,-8.58$	A1ft	Accept 0.583 $x=\sqrt{ } 21-4=0.58 \mathbf{S C} 1$ Allow SC1 on follow through for positive root only.
$\begin{gathered} \text { 11(b) } \\ \text { Alt. } \end{gathered}$	$x=\frac{-8 \pm \sqrt{ }\left(8^{2}-4 \times(1) \times-5\right)}{2}$	M1	Allow $x=\frac{-8 \pm \sqrt{ }(64-20)}{2}$ as only error for M1
	$x=0.58,-8.58$	A1	Accept 0.583

12(a)(i)	$10^{2}-5^{2}\left(=Q R^{2}\right)$	M1	
	$(Q R=) \sqrt{75}$	M1dep	
	8.66(0...), $5 \sqrt{ } 3$	A1	Accept 8.7 for $3 / 3$ 8.6 only implies M2
12(a)(ii)	Sight of cosine	M1	
	(Angle $Q P R=$) $\cos ^{-1}(5 \div 10)$ oe	M1dep	Alternative ratios using (a)(i) must be $\begin{aligned} & \sin ^{-1}\left({ }^{(}(a)(i)^{\prime} \div 10\right) \text { M2 } \\ & \tan ^{-1}\left({ }^{(}(a)(i)^{\prime} \div 5\right) \text { M2 } \end{aligned}$ sine rule: $\sin x=($ anything $\times \sin 90 \div 10)$ M2
	60°	A1	No ft 60 seen with no working full marks.
12(b)	Area $A D X=$ their (a)(i) $\times 2.5$ oe	M1	$\begin{aligned} & =21.65(0 \ldots) \text { if exact value or } 8.66 \text { used } \\ & =21.75 \text { if } 8.7 \text { used } \end{aligned}$
	$\text { Area } A X B=(\text { any angle }) \div 360 \times$ $\pi \times 10^{2}$	M1	Accept $100 \pi \div 3,4,5,6,8,9,10,15,20$
	$=26.2,26.18,26.1799(3 .$.	A1ft	ft their angle
	$\begin{aligned} & \text { Shaded area } 50 \text { - ('their } 21.65 \text { ' } \\ & + \text { 'their } 26.18 \text { ') } \end{aligned}$	M1dep	Dependent on both Ms
	2.16 to 2.183 (if 8.66 used) 2.06 to 2.083 (if 8.7 used)	A1	Allow 2.2 with working using 8.66 Allow 2.1 with working using 8.7 NB accuracy is as stated, which allows for a range of values of π from 3.14 to 3.142 and final answer to 2 sf or 3 sf accuracy.

13	$($ Area $=) \frac{1}{2} x(x+1+x+2)$	M1	oe $(x+1)+\frac{1}{2} \times x \times(1)$
	$2 x^{2}+3 x-20=0$	A1	oe eg $x^{2}+1.5 x-10=0$
	$(2 x-5)(x+4)=0$	M1dep A1	M1 for an attempt at using an algebraic method such as factorising, formula (allow one error) or completing the square (allow one error) to solve the quadratic eg for $(2 x+a)(x+b)$ where $a b= \pm 20$ A1 for a completely correct method
	$x=2.5$	A1	Do not award last A1 if a negative value given as possible answer eg if -4 given 2.5 seen with no or incomplete work SC2 2.5 after first M1, A1 give $5 / 5$

14	Angle $A T B=22^{\circ}$	B1	
	$\frac{B T}{\sin 48}=\frac{50}{\sin 22}$	M1	$\frac{A T}{\sin 110}=\frac{50}{\sin 22}$
	$B T=\frac{50 \sin 48}{\sin 22}$	M1	$A T=\frac{50 \sin 110}{\sin 22}$
	$B T=99$ or 99.19 or 99.2	A1	$A T=125$ or 125.4(\ldots) or better accuracy
	$h+60=$ 'their $B T ' \times \sin 70$	M1dep	Dependent on previous use of sine rule. $\begin{aligned} & h+60=\text { 'their } A T \text { ' } \times \sin 48 \\ & \text { oe } \frac{h+60}{\text { their } B T}=70 \end{aligned}$
	$h=33$, or 33.2 or 33.21	A1	or better accuracy
$\begin{gathered} 14 \\ \text { Alt. } \end{gathered}$	$h+60=\tan 48 \times(50+x)$	M1	oe x is distance from B to base of cliff
	$h+60=\tan 70 \times x$	M1	oe
	$50 \tan 48=x(\tan 70-\tan 48)$	M1	oe
	$x=34$ or 33.9 or 33.92	A1	or better accuracy
	$h+60=$ 'their x ' $\times \tan 70$	M1dep	Dependent on previous Ms $h=\text { 'their } x ' \times \tan 70-60$
	$h=33$, or 33.2 or 33.21	A1	or better accuracy

$\mathbf{1 5 (a)}$	$5 x(x+4)$	B1	
$\mathbf{1 5 (b)}$	$(x+7)(x-7)$	B1	
$\mathbf{1 5 (c)}$	M1 for expanding and collecting to general quad form, allow one error but expansions must have x^{2} term, x term and constant term. Allow misuse of minus.	M1	eg $9 x^{2}+24 x+16-4 x^{2}+4 x+1$
	Difference of two squares $((3 x+4)-(2 x+1)) \times((3 x+4)+(2 x+1))$		
	$5 x^{2}+20 x+15$	A1	A1 for either $(x+3)$ or $(5 x+5)$ if difference of 2 squares used.
	$5(x+3)(x+1)$	A1	Accept $(x+3)(5 x+5)$ or $(5 x+15)(x+1)$

16	$y(3 x-4)=x y+2$	M1	$y \times 3 x-4=x y+2$ is M0 unless recovered
	$3 x y-4 y=x y+2$	A1	
	$2 x y=4 y+2$	M1dep	$3 x y-x y=4 y+2$ Allow one 'sign' error
	$x=\frac{2 y+1}{y}$	A1	oe Do not award if $x=$ not written $\mathrm{SC} x=\frac{3}{y} \quad \mathrm{~B} 2$
$\begin{gathered} 16 \\ \text { Alt. } \end{gathered}$	$y(3 x-4)=x y+2$	M1	$y \times 3 x-4=x y+2$ is M0 unless recovered
	$3 x-4=x+\frac{2}{y}$	A1	$3 x-4=\frac{x y}{y}+\frac{2}{y}$
	$2 x=4+\frac{2}{y}$	M1dep	$3 x-x=4+\frac{2}{y}$ Allow one 'sign' error
	$x=2+\frac{1}{y}$	A1	oe Deduct mark if $x=$ not written $\mathrm{SC} x=\frac{3}{y} \quad \mathrm{~B} 2$

17	Attempt to find gradient of perpendicular line	M1	Must be negative reciprocal of their gradient for AB
	(Gradient $=$) $-\frac{2}{3}$	A1	oe eg $-0.66,-0.67$
	Use of midpoint $(3,1)$	M1	Must be used either on the diagram with an attempt at a perpendicular or in $y=m x+c$ to find c.
	$y=-\frac{2}{3} x+3$	A1ft	ft their gradient if first M1 awarded Accept equivalents eg $3 y+2 x=9$

$\mathbf{1 8}$	$A B D=66$ (Alt segment)	B1	or angles in triangle if $A D B$ found first
		$D C B=104$ (opposite in cyclic)	B1

$\mathbf{1 9 (a)}$	$y=\cos x+1$	B 1	$y=1+\cos x$
$\mathbf{1 9 (b)}$	$y=2 \cos x$	B 1	
$\mathbf{1 9 (c)}$	$y=\cos 2 x$	B 1	
$\mathbf{1 9 (d)}$	$y=\cos (90-x), y=\cos (x+270)$ $y=\cos (x-90)$ or $y=\sin x$	B 1	

20(a)	Upper limit wattage $=2550$	B1	Allow $2549 . \dot{9}$
	$400000 \div$ 'Their upper limit'	M1	Attempt at an upper limit must be made
	156 lights	A1ft	ft their upper limit if 'truncated' eg $400000 \div 2549=156.92$ is $1 / 3$ if answer $157,2 / 3$ if answer 156. NB Check answer is from correct work. SC $400000 \div 2450=163$ lights B2
20(b)	Upper limit I 25.5 And lower limit W 2450	B1	Allow 25.49
	$(\mathrm{R}=) 2450 \div 25.5^{2}$	M1	ft their limits for M1 only if limits attempted and their lower W is divided by their upper I squared
	$(\mathrm{R}=) 3.77,3.767(\ldots$.	A1ft	ft their limits only if the lower limit of 2450 is divided by 'their upper limit of I' squared. Follow through must be given to at least 3sf. eg $2450 \div 25.49^{2}=3.7707$.. is $2 / 3$. NB make sure answer is from correct work. SC $400000 \div 25.5^{2}=615$ lights B1

21	$\begin{aligned} & \text { Radius A }=1.5 \mathrm{~cm} \\ & \text { Radius B }=2.5 \mathrm{~cm} \end{aligned}$	B1	These must be clearly stated or implied (eg $2.25 \pi, 6.25 \pi$) at some stage in solution. NB Scale factor such as $0.6,1.66, \frac{5}{3}$ implies B1 NB Check pie charts for these.
	1980 (population A)	B1	
	$6.25(\pi) \div 2.25(\pi)$	M1	M1 for attempt to 'compare' areas. eg 25:9, 2.777...
	5500 population in B	A1	Allow 5450-5550
	1375	A1	
$\begin{gathered} 21 \\ \text { Alt. } \end{gathered}$	$\begin{aligned} & \text { Radius } \mathrm{A}=1.5 \mathrm{~cm} \\ & \text { Radius } \mathrm{B}=2.5 \mathrm{~cm} \end{aligned}$	B1	These must be clearly stated or implied (eg $2.25 \pi, 6.25 \pi$) at some stage in solution. NB Scale factor such as $0.6,1.66, \frac{5}{3}$ implies B1 NB Check pie charts for these.
	Compares a population to an area for village A	M1	$\begin{array}{ll} \text { eg } & 660 \equiv(=) 2.35619449 . . \\ & 660 \div \frac{1}{3} \times 2.25 \pi \\ & 1980: 2.25 \pi \end{array}$
	Finds a value for person per area or area per person	A1	$275-285$ people per cm^{2} $3.5-3.6 \times 10^{-3} \mathrm{~cm}^{2}$ per person
	Calculates area of quadrant in B and either multiplies or divides by appropriate value	M1	
	1375	A1	

