ASSESSMENT and
OUALIFICATIONS

General Certificate of Secondary Education

Mathematics 3301 Specification A

Paper 1 Higher Tier

Mark Scheme
 2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Paper 1H

1(a)	$n^{2}+n$ or $n(n+1)$ or $n \times(n+1)$ or $(n+1) \times n$	B2	B1 for $n^{2} \ldots$ or brackets omitted
$\mathbf{1 (b)}$	42	B2	B1 10 and 11 seen

2(a)	$7 x-14 y-6 x+3 y$	M1	Allow one error		
	$x-11 y$	A1			
2(b)	$24-x=15$	M1	Allow $24-x=3 \times 5$		
	9	A1			
2(c)(i)	$(y-2)(y-3)$	B2	B1 $(y \pm 1)(y \pm 6)$ or $(y \pm 2)(y \pm 3)$		
2(c)(ii)	2 and 3	B1ft			
2(d)	$\frac{(x+3)}{4}$	B2	B1 for each of numerator and denominator If denominator $=4$, then numerator must be an algebraic expression to earn B1		
2(e)	$16 m^{12} p^{4}$	B2	- 1 eeoo		

3(a)	$\frac{1}{1.5}$	M1	$\frac{1}{\frac{3}{2}}$ and $1 \div 1.5$ both earn M1
	$\frac{2}{3}$	A1	$\mathrm{SC} 1 \text { for }-\frac{2}{3}$
3(b)	$10(\div 0.2$	M1	Both approximations correct
	50	A1	
	7	A1	Allow 7.1
3(c)	3 and common denominator	M1	or $\frac{21}{5}-\frac{5}{3} \quad 1.66(6 \ldots)$
	$(3+) \frac{3}{15}-\frac{10}{15}$ Allow one error in numerator	M1	or $\quad \frac{63}{15}-\frac{25}{15} \quad 4.2$ Allow a total of 1 error in either $1^{\text {st }}$ or $2^{\text {nd }} \mathrm{M}$ mark
	$2 \frac{8}{15}$	A1	oeeg $\frac{38}{15}$ $2.533(3 \ldots)$ SC 2 $(3)-\frac{7}{15}$ oe 2.53 scores M2

4(a)	Reflection	B1	
	$y=x$	B1	oe
4(b)	Rotation	B1	Allow turn
	90° anticlockwise	B1	oe $\quad \frac{1}{4}$ turn anticlockwise scores B2 $\frac{1}{4}$ turn scores B1
	(Centre) (1,1)	B1	
4(c)	Enlargement	B1	No combined transformations
	Scale factor -2	B1	
	Centre (0,0)	B1	

$5(\mathbf{a)}$	$0.833(3 \ldots)$ or 0.875 and 0.9 $0.166(6 \ldots)$ or 0.125 and 0.1	M1	Allow percentages or fractions with denominators with prime factors of 2 and/or 5 only terminate oe			
	$\frac{5}{6}$	A1	Must see working	$	$	5(b)
:---						

\(\left.$$
\begin{array}{|c|l|c|c|}\hline \mathbf{6 (a)} & \begin{array}{l}(2.5,1),(7.5,2),(12.5,7), \\
(17.5,9),(22.5,7),(27.5,4) \\
\text { joined within 1 small square, } \\
\text { straight lines attempted }\end{array} & \text { B2 } & \begin{array}{l}\text { B1 One error or not joined or joined with curve } \\
\text { SC1 for consistent plots at lcb or ucb }\end{array} \\
\hline \mathbf{6 (b)} & \begin{array}{l}\text { Correct comparison of average } \\
\text { and spread, } \\
\text { or } \\
\text { Correct comparison of average or } \\
\text { spread and one other valid } \\
\text { observation }\end{array} & \text { B2 } & \begin{array}{l}\text { eg Students average time larger oe } \\
\text { Allow eg in general, on average, overall } \\
\text { Spread of student times larger oe } \\
\text { Allow eg larger range, more varied } \ldots\end{array}
$$

Other valid observations

eg More students watch from 15 to 25 \mathrm{~h}

Same number (7) watch from 10 to 15 \mathrm{~h}\end{array}\right]\)| B1 one correct comparison of average/spread |
| :--- |
| or one valid observation |

$7(\mathbf{a)}$	7×10^{5}	B2	B1$35000000 \div 50(: 1)$, or their $700000(: 1)$, or their 700000 in correct standard form
7 7(b)	$3.5 \times 10^{3} \div 10^{6}$	M1	or $3500 \div 1000000$ or 0.0035
	3.5×10^{-3}	A1	

$\mathbf{8}$	$1 \rightarrow \mathrm{D}$	B1	$1 \rightarrow y \geq 2 x-4$
	$2 \rightarrow \mathrm{C}$	B1	$2 \rightarrow y \geq-2 x+4$
	$3 \rightarrow \mathrm{E}$	B1	$3 \rightarrow y \leq 2 x-4$
	$4 \rightarrow \mathrm{~A}$	B1	$4 \rightarrow y \leq-\frac{1}{2} x+2$

9	$2 s=(u+v) t$	$s / t=\frac{1}{2}(u+v)$	M1	$2 s=(u+v) t \quad \text { M1 }$ Look out for missing bracket then recovery $s=u t / 2+v t / 2$
	$\frac{2 s}{t}=u+v$	$s / t-\frac{1}{2} v=\frac{1}{2} u$	M1	$\begin{array}{ll} 2 s=u t+v t & s-v t / 2=u t / 2 \quad \mathrm{M} 1 \\ & \text { (must rearrange for M1) } \end{array}$
	$\frac{2 s}{t}-v=u$		A1	$\begin{array}{lll} 2 s-v t=u t & \text { M1 } 2(s-v t / 2)=u t & \text { M1 } \\ (2 s-v t) / t=u & \text { A1 } \quad \frac{2}{t}(s-v t / 2)=u & \text { A1 } \end{array}$ Look out for equivalent answers eg $u=\left(\frac{1}{2} v t-s\right) \div\left(-\frac{1}{2} t\right) u=s \div t \div 0.5-v$

12	$Y Z=Z Y$	B1	
	Angle $M Z Y=$ angle $N Y Z$ base angles of (Isosceles) $\Delta X Y Z$	B1	Note Reason necessary eg you might see If $X Z=X Y$ then angle $X Z Y=$ angle $X Y Z$
	Angle $M Y Z=$ angle $N Z Y$	B1	
	Triangles congruent, ASA	B1dep	Note Dependent on earning first 3 marks Must give correct reason for congruence (ASA) Only allow AAS if complete argument stating 'third angles equal'
13	Attempt at $y=x-1$	M1	' m ' or ' c ' correct ($y=-1$ scores M0) Table of values seen with at least one pair correct, with attempt at line, earns M1
	Correct ruled line	A1	
	$\begin{aligned} & -2.6 \leq x \leq-2.5 \\ & \text { and } 1.5 \leq x \leq 1.6 \end{aligned}$	A1ft	ft their line, two solutions only, tolerance of ± 0.05
14(a)	Correct Pythagoras in two appropriate right-angled triangles	M1	or simply $B H^{2}=12^{2}+3^{2}+4^{2}$
	13	A1	
14(b)	$H B=13, H C=5 \text { or } D B=\sqrt{ } 153$ with attempt at trig. Ratio	M1	Explanations may not involve any calculations eg $B C<B D$ or $H C>H D$ together with some comparison such as $B H$ is common (diagrams drawn, to illustrate, are appropriate)
	Two correct, comparable trig. ratios eg $\sin x=\frac{4}{13}$ and $\sin y=\frac{5}{13}$	A1	For example: $B H$ is common and triangles $B H D$ and $B H C$ are right-angled, so y must be bigger because the height is greater
	y	A1	Good explanation and correct conclusion ... this earns all 3 marks

15(a)	Probabilities of $0.7,0.3,0.4,0.6$ on ' 2 nd game' column	B1	SC1 either 'top half' or 'bottom half' correct
	Probabilities of $0.4,0.6,0.7,0.3$ on ' 3 rd game' column	B1	
15(b)	0.5×0.7	M1	ft their probabilities (if using values <1) (not 0.5)
	$0.5 \times 0.3 \times 0.4$ or $0.5 \times 0.4 \times 0.7$	M1	ft as above
	addition of three valid probabilities	M1dep	ft their values (note dependent on first two marks)
	0.55	A1	If probabilities are all 0.5 , and there is a correct attempt at one of the alternatives, award SC 1 If they work out the prob. that Simon wins, 0.5×0.6 (M1) (ft their probs. in all of these) $0.5 \times 0.4 \times 0.3$ or $0.5 \times 0.3 \times 0.6($ M1) 1 - (addition of valid three) (M1dep) 0.55 (A1)

$\mathbf{1 6 (a) (i) ~}$	w^{8}	B1			
$\mathbf{1 6 (a) (i i)}$	w^{6}	B1			
$\mathbf{1 6 (a) (i i i) ~}$	w^{12}	B1			
$\mathbf{1 6 (b) (i) ~}$	$\frac{x}{y}$	B1	Allow $x \div y$ or $x \times y^{-1}$		
$\mathbf{1 6 (b) (i i) ~}$	x^{2}	B1	Allow $x \times x$		
$\mathbf{1 6 (b) (i i i) ~}$	$9 y$	B1	Allow $y 9$	$9 \times y$	$y \times 9$

17	Substitute one pair of data into $t=\mathrm{k} \sqrt{ } m, t=\mathrm{k} / m$ or $t=\mathrm{k} / \sqrt{ } m$	M1	Look for valid alternative methods which will still earn this mark
egThe first rule might be eliminated by reasoning that the relationship must be an inverse one since as t increases, m decreases			
	Test one of the rules to reach a conclusion	M1	ieTest value of k found from first pair on another pair or find a contradictory value of k Test a second rule to reach a conclusion M1
Select correct rule (C) Aepeat as above (2-stage process)			

18(a)	either $12+\sqrt{ } 12 \sqrt{ } 3+\sqrt{ } 12 \sqrt{ } 3+3$	M1	Allow $\sqrt{ } 12 \sqrt{ } 12+\sqrt{ } 12 \sqrt{ } 3+\sqrt{ } 12 \sqrt{ } 3+\sqrt{ } 3 \sqrt{ } 3$ Allow one error (might see $\sqrt{ } 36$ used here)
	$\begin{aligned} & \sqrt{ } 12 \sqrt{ } 3=2 \sqrt{ } 3 \sqrt{ } 3=6 \rightarrow \text { sum }=27 \\ & \sqrt{ } 12 \sqrt{ } 3=(\sqrt{ } 36)=6 \rightarrow \text { sum }=27 \end{aligned}$	A1	Clearly shown, must see surds used correctly
	or $\sqrt{ } 12=2 \sqrt{ } 3$ and $\sqrt{ } 12+\sqrt{ } 3=3 \sqrt{ } 3$	M1	Expanding $(2 \sqrt{ } 3+\sqrt{ } 3)^{2}$, allowing one error, also earns this mark
	$(3 \sqrt{ } 3)^{2}=9 \times 3=27$	A1	$2 \sqrt{ } 3 \sqrt{ } 3=6$ must be seen eventually to earn A1
18(b)(i)	$(\sqrt{ } 8+\sqrt{ } 2)^{2}=18$	M1 A1	Marked as in Part (a)
	Use of Pythagoras in $\triangle P Q S$ ie $(\sqrt{ } 12+\sqrt{ } 3)^{2}-(\sqrt{ } 8+\sqrt{ } 2)^{2}$	M1	or Subtraction of $Q S^{2}$ from $P Q^{2}$ with their value for $Q S^{2}$
	$P S^{2}=9$	A1	Must be clearly shown ($P S=3 \mathrm{~cm}$, given)
18(b)(ii)	$\sqrt{ } 8+\sqrt{ } 2+\sqrt{ } 2=4 \sqrt{ } 2$	B1	Could be seen at any stage
	Area $=\frac{1}{2} \times(\sqrt{ } 8+\sqrt{ } 2+\sqrt{ } 2) \times 3$	M1	Could be $\frac{1}{2} \times(\sqrt{ } 8+\sqrt{ } 2) \times 3+\frac{1}{2} \times \sqrt{ } 2 \times 3$
	$6 \sqrt{ } 2$	A1	

19(a)	$\frac{4}{3} \pi r^{3}=2 \times \frac{1}{3} \pi r^{2} x$	M1	Must include the factor of 2 Allow use of h instead of x
	Simplified to give $x=2 r$	A1	Alternatively Allow substitution of $2 r$ for height of cone and verification of result $\text { ie } \begin{aligned} 2 \times \text { Vol cone } & =2 \times \frac{1}{3} \times \pi \times r^{2} \times 2 r \quad \text { M1 } \\ & =\frac{4}{3} \pi r^{3} \text { (must be seen) A1 } \end{aligned}$
19(b)	$(l){ }^{2}=r^{2}+4 r^{2}$	M1	$(l){ }^{2}=r^{2}+(2 r)^{2}$ is M1 $(l)^{2}=r^{2}+2 r^{2}$ is M0
	$(l)=\sqrt{ } 5 r$	A1	
	Surface area cone $=\pi \times r \times \sqrt{ } 5 r$	M1	Using their l if from an attempt at Pythagoras
	$4: \sqrt{ } 5$	A1	Allow $\sqrt{ } 5: 4$ SC2 for a complete numerical solution

