Surname			Other	Names			
Centre Number				Candida	ate Number		
Candidate Signature							

For Examiner's Use

General Certificate of Secondary Education June 2007

MATHEMATICS (MODULAR) (SPECIFICATION B) Module 5 Higher Tier Paper 1 Non-Calculator

33005/H1

Monday 4 June 2007 1.30 pm to 2.45 pm

For this paper you must have:

· mathematical instruments.

You must not use a calculator.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in the spaces provided.
- Do all rough work in this book.

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You may ask for more answer paper, graph paper and tracing paper. This must be tagged securely to this answer book.

Advice

• In all calculations, show clearly how you work out your answer.

For Examiner's Use		
Pages	Mark	
3		
4-5		
6–7		
8-9		
10-11		
12-13		
14-15		
TOTAL		
Examiner's Initials		

33005/H1

Formulae Sheet: Higher Tier

You may need to use the following formulae:

Volume of prism = area of cross-section \times length

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

Surface area of sphere = $4\pi r^2$

Volume of cone =
$$\frac{1}{3}\pi r^2 h$$

Curved surface area of cone = $\pi r l$

In any triangle ABC

Area of triangle = $\frac{1}{2}ab \sin C$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \ne 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Answer all questions in the spaces provided.

1 The diagram shows two rectangles A and B.

Complete the sentences.

- (b) Rectangle B is a translation of rectangle A by the vector $\left(\begin{array}{c} \dots \\ \dots \\ \end{array}\right)$ (1 mark)

(c) Rectangle *B* is a rotation of rectangle *A* through degrees about the point (......) .

(2 marks)

2	(a)	Work out the integer values of <i>n</i> which satisfy the inequality $15 \le 5n < 3$	0
		Answer	(3 marks)
	(b)	Solve $4n - 15 > 0$	
		Answer	(2 marks)
	(c)	Write down the value of the positive odd integer that satisfies both	
		$15 \leqslant 5n < 30$	
		and $4n - 15 > 0$	
		Answer	(1 mark)

3 The diagram shows an isosceles triangle *ABC*.

Calculate the area of the triangle <i>ABC</i> .	
Show your working.	
State the units of your answer.	
·	
Δ nswer	(6 marks)

4	(a)	Explain why the value of x^2 is never negative.
		(1 mark)

(b) On the grid, draw the graph of $y = x^2$ for values of x from -3 to +3.

(2	marks)
----	--------

(c)	Use your graph to estimate the values of $\sqrt{3}$	
		•••••
	Answer	(2 marks)

- 5 The diagram shows a cube. The volume of the cube is $1000 \, \text{cm}^3$.
 - (a) A label covers half the area of the front of the cube.

	Calculate the area of the label. Show your working.
	Answer cm ² (3 marks)
(b)	The cube contains 200 cm ³ of water.
	How much more water is needed for the cube to be three-quarters full? Give your answer in litres.
	Answer litres (3 marks)

6 (a) The diagram shows four points *A*, *B*, *C* and *D* on the circumference of a circle. *BD* is a diameter. *ABCD* is a kite.

Not drawn accurately

	Answer	. degrees	(2 marks)
Work out the value	e of x.		

(b) The diagram shows a circle with centre O. RS and TS are tangents to the circle. OR = 3 cm and RS = 4 cm.

(i) Write down the length of TS.

Answer cm (1 mark)

(ii) Give a reason for your answer.

(1 mark)

,

(iii) Use the facts below to write down the value of y.

$$\sin 48.6^\circ = \frac{3}{4}$$
 $\cos 41.4^\circ = \frac{3}{4}$ $\tan 36.9^\circ = \frac{3}{4}$

Answer $y = \dots degrees$ (1 mark)

(iv) Use your answer to part (iii) to work out the value of z.

Answer degrees (3 marks)

7 In the expressions in the table x, y and z represent lengths.

	Expression	Length	Area	Volume	None
A	xy		~		
В	xy(x+y)				
С	xy + z				
D	y^2				

(a)	Complete the table to show whether each expression could represent length, area, volume or none of these.
	(3 marks)
(b)	Explain your answer for expression C.

8 The diagram shows a rectangle *ABCD*.

The gradient of $AB = \frac{2}{5}$

(a) Write down the gradient of *DC*.

Answer (1 mark)

(b) Work out the gradient of *BC*.

(c) A is the point (0, 4)

Write down the equation of the line *AD*.

Answer (1 mark)

- 9 (a) Factorise $x^2 6x + 8$ Answer (2 marks)
 - (b) The diagram shows the graph of $y = x^2 6x + 8$ The curve cuts the x-axis at the points A and B.

Not drawn accurately

Work out the equation of the line L which passes through the vertex V of	the curve.
Answer	(3 marks)

10	Simplify fully $\frac{8(x+1)(2x-3)}{2(2x-3)}$
	Answer
11	Make s the subject of the formula $t = \frac{3(10 - s)}{s}$
	Answer
12	Given that n is an integer, prove that
	(n+3)(2n+1) + (n-2)(2n+1) is not a multiple of 2.
	(5 marks)

- 13 The diagram shows a sphere and a cone.
 - The radius of the sphere is 4 cm.
 - The radius of the base of the cone is 6 cm.

The volume of the sphere and the volume of the cone are equal.

Calculate the height, h , of the cone.		
	 •••••	•••••
	•••••	
	 •••••	
	 •••••	
	 •••••	
Answer	 cm	(5 marks)

y = 5x - 1 $y = 2x^2 + 1$

14 Solve the simultaneous equations

Do not use trial and improvement. You must show your working.

END OF QUESTIONS

Answer

(*6 marks*)

There are no questions printed on this page