

General Certificate of Secondary Education

Mathematics 3302

Specification B

Module 3 Tier H 33003H THREE TIER

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The following abbreviations are used on the mark scheme:

M Method marks awarded for a correct method.

A Accuracy marks awarded when following on from a correct method. It is not necessary always to see the method. This can be implied.

B Marks awarded independent of method.

M dep A method mark which is dependent on a previous method mark being

awarded.

ft Follow through marks. Marks awarded for correct working following a

mistake in an earlier step.

SC Special Case. Marks awarded for a common misinterpretation which has

some mathematical worth.

oe Or equivalent.

eeoo Each error or omission.

MODULE 3 HIGHER TIER

33003H

1	75 – 63 (= 12)	M1	$\frac{63}{75} \times 100 (= 84) \ 1 - \frac{63}{75} (= 0.16)$
	$\frac{\text{their } 12}{75} \times 100$	M1 dep	100 – their 84 their 0.16×100
	16	A1	
2(a)	24 ÷ (3 + 5)	M1	Condone 1 ÷ (3 + 5) 3 unsupported is M0
	9	A1	Do not allow $\frac{3}{8}$ (of a day) SC1 Answer 15 or 9 and 15
2(b)	(their 9+1): 24-(their 9+1)	M1	10 and 14 seen
	10:14	A1 ft	Must be integers
	5:7	A1	Must have seen previous ratio
3(a)	All points plotted within $\pm \frac{1}{2}$ square	B1	
	Smooth curve through their points $(\pm \frac{1}{2} \text{ sq})$	B1 ft	Curve must be quadratic
3(b)(i)	Draws $y = 10$	B1	
3(b)(ii)	ft their curve x value at $y = 10$	B1 ft	
3(c)	Need to extend the curve (or graphs) to the left	B1	Allow "for more –ve <i>x</i> values" instead of "to the left"
	Need to have another point of intersection (for the graphs)	B1	If only refers to extending curve allow "find x when y is 10"
4()(')	10.5725()	D1	
4(a)(i)	10.5735()	B1	
4(a)(ii)	10.6	B1 ft	ft from value > 3 sf seen
4(b)	1.5	B1	oe eg $\frac{3}{2}$
4(c)	49	B1	
5(a)	9.8×10^{7}	B1	
5(b)	$8.6(4) \times 10^{-8}$	B2	B1 for 8.6(4) ⁻⁸ or correct answer not in standard form

6(a)	$A = kB^2$	M1	$A \propto B^2$
	$50 = k \times 10^2$	M1	This as first line implies M2
	$k = \frac{1}{2}$ $(A = \frac{1}{2}B^2)$	A1	Equation is needed only if $A = kB^2$ was not seen for M1
6(b)	$(B^2 =) 72 \div \text{their } k$	M1	144 if correct
	(±)12	A1	
7	(x = 0.47171) 1000x = 471.7171 10x = 4.7171 and subtracts	M1	(x = 0.47171) 100x = 47.17171 and subtracts x
	990x = 467	A1	99x = 46.7
	467 990	A1	Do not accept $\frac{46.7}{99}$
Alt 7	(0.4 + 0.07171) (n = 0.07171) 1000n = 71.7171 10n = 0.7171 and subtracts	M1	(n = 0.07171) 100n = 7.1717 and subtracts n
	990n = 71	A1	99n = 7.1
	<u>467</u> <u>990</u>	A1	Do not accept $\frac{46.7}{99}$
Alt 7	(m = 0.7171) 100m = 71.71 and subtracts m	M1	
	$99m = 71$ and obtains $\frac{71}{990}$	A1	
	<u>467</u> <u>990</u>	A1	
8	1.6(0) seen	M1	
	$1 - \frac{1.5}{1.6}$	M1 dep	0.0625
	6.25	A 1	SC2 6.2 or 6.3 with no working
Alt 8	Starts with value eg 1000 1000 × 1.6 or 1000 × 1.5	M1	Allow for sight of 1600 or 1500
	their 1600 - their 1500 their 1600	M1 dep	$0.0625 1 - \frac{\text{their } 1500}{\text{their } 1600}$
	6.25	A1	SC2 6.2 or 6.3 with no working

9(a)	2 (×) 50 or 5 (×) 20	M1	$2 (\times) 2 (\times) 25 \text{ or } 2 (\times) 5 (\times) 10$ or $5 (\times) 5 (\times) 4$
	2 (×) 2 (×) 5 (×) 5	A1	Condone use of 1
	$2^2 \times 5^2$	A1	Do not allow use of 1
9(b)(i)	4 or 2 ²	B1 ft	ft from their (a) allow index form
9(b)(ii)	$2^3 \times 5^2 \times 7$	M1	ft from their (a) Lists multiples of 56 up to 1400
	1400	A1	No ft SC1 2800
10	Estimates $\sqrt{37}$ as 6 or $\sqrt[3]{8.1}$ as 2	M1	
10		M1	
	3	A1	
11(a)	50% of 96		
	25% of 96	M1	Must find 3 values ft and allow 1 error in the 3 values
	$12\frac{1}{2}\%$ of 96 and attempt at sum		2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	84	A1	84 with no working is M0
11(b)	$(6\frac{1}{4} \text{ is}) \text{ half of } 12\frac{1}{2}$	B1	$6\frac{1}{4}\% = 15$ (need to see both)
	Add this extra amount on	B1 dep	SC1 Obtains the value 225
12	95 ÷ 5 (= 19)	M1	
	$(19) \times 6$	M1 dep	
	114	A1	SC1 $\frac{5}{6}$ (of normal price) = 95 with no further progress made
	Ι.		
13(a)	1	B1	
13(b)	$\frac{1}{1000}$ or $\frac{1}{10^3}$	M1	
	0.001	A1	
13(c)	$5^{11}(\div 5^3)$	B1	$5^6 \times 5^2$ or $5^9 \times 5^{-1}$ or $5^9 \div 5^{(1)}$
	5 ⁸	B1 ft	Only ft if numerator seen (as a power of 5) Note: $\frac{25^{11}}{5^3} = 5^8$ is B0B0
			$\frac{1}{5^3} = \frac{3}{5} = \frac{15}{5} $
13(d)	$(2^4)^{-\frac{3}{4}}$ or $\frac{1}{16^{\frac{3}{4}}}$	M1	$\frac{1}{5^3} = 3 + 13 + 13 + 13 + 13 + 13 + 13 + 13 $
13(d)	$(2^4)^{\frac{3}{4}}$ or $\frac{1}{3}$	M1	-

14	0.75	B1	
	0.145	B1	
	their min cover \times 2 or their min page \times 100	M1	1.5 or 14.5 if correct Must have attempted one minimum
	their min cover \times 2 + their min page \times 100	M1 dep	Must have attempted two minimums
	16	A1	

15(a)	$\sqrt{16} - \sqrt{4} \ (= 4 - 2)$ or $\sqrt{16} - \sqrt{2} \ \sqrt{2}$ or $\sqrt{8} \ \sqrt{2} - \sqrt{4}$	M1	$ \sqrt{2(2\sqrt{2} - \sqrt{2})} $ = $\sqrt{2}(\sqrt{2})$ both steps needed or $\sqrt{2}(2\sqrt{2} - \sqrt{2})$ = $2\sqrt{2}\sqrt{2} - \sqrt{2}\sqrt{2}$ Both steps needed
	2	A1	
15(b)	$\frac{(\sqrt{5})}{\sqrt{20}}$	B1	$\frac{(\sqrt{5})}{\sqrt{4}\sqrt{5}} \text{ or } \frac{(\sqrt{5})}{2\sqrt{5}} \text{ or } \sqrt{\frac{5}{20}} \text{ or } \frac{\sqrt{1}}{\sqrt{2}\sqrt{2}}$ Do not allow for $\frac{(\sqrt{5})}{\sqrt{2}\sqrt{10}}$ $\frac{\sqrt{5}}{\sqrt{2}\sqrt{10}} \times \frac{\sqrt{2}\sqrt{10}}{\sqrt{2}\sqrt{10}} = \frac{(\sqrt{5}\sqrt{2}\sqrt{10})}{20}$
	$\frac{1}{2}$	B1	oe