ASSESSMENT and
OUALIFICATIONS

General Certificate of Secondary Education

Mathematics 3302 Specification B

Module 1 Tier H 33001H

Mark Scheme

2006 examination - March series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

The following abbreviations are used on the mark scheme:

M Method marks awarded for a correct method.
A Accuracy marks awarded when following on from a correct method. It is not necessary always to see the method. This can be implied.

B Marks awarded independent of method.
M dep A method mark which is dependent on a previous method mark being awarded.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special Case. Marks awarded for a common misinterpretation which has some mathematical worth.
oe \quad Or equivalent.
eeoo Each error or omission.

MODULE 1 HIGHER TIER

Note: Probability - Accept fraction, decimal or percentage. Do not accept ratio. 1 out of 3 or 1 in 3 penalise once on whole paper.

1(a)(i)	$\frac{2}{5}$ ignore 2 if seen as well	B1	oe $0.4,40 \%$
1(a)(ii)	$\frac{5}{10}$ ignore 5 if seen as well	B1	oe $0.5,50 \%$
1(b)	These results support Ronnie's claim because $\frac{11}{20}$ is greater than 50%	B1	or $\frac{11}{20}$ He pots more than he misses Pots more than $50 \% ~$ $\left(\frac{1}{2}\right)$
1(c)	Strong positive box ticked	B1	Also accept Ronnie may be tired after practising for 4.5 hours or that Ronnie cannot win more than 8 games in a match ie the idea that the relationship will change
1(d)	Danger of extrapolation	B1	

2(a)	Sight of $\frac{10}{30}$	B1	oe anywhere in (a)
			$\frac{2}{3}$ Any pair of branches with $\frac{2}{3}$ and $\frac{1}{3}$
	M1		

\(\left.$$
\begin{array}{|l|l|c|l|}\hline \text { 3(a) } & \text { Any suitable random method } & \text { B1 } & \begin{array}{l}\text { Number all population and draw } \\
\text { numbers (names) from hat/random } \\
\text { number tables/raffle, use random } \\
\text { numbers }\end{array} \\
\hline \text { 3(b) } & \begin{array}{l}\text { Correct method seen } \\
\text { eg } \frac{12100}{61500} \times 1000\end{array} & \text { M1 } & \text { Can be implied by any correct value } \\
\hline & \text { Any two correct answers } & \text { A1 } & \begin{array}{l}\text { Accept decimals here also } \\
196.7 \ldots 411.3 \ldots \\
269.9 \ldots 121.9 \ldots \\
1 \text { dp rounded or truncated }\end{array} \\
\hline & \text { All four correct answers } \\
\text { 197, 411, 270, 122 }\end{array}
$$ \quad \begin{array}{l}Must be integers

Use of 100 \Rightarrow misread M1 only if

seen or follows scheme with 2

correct decimals or integers\end{array}\right]\)| |
| :--- |

5(a)(i)	Leading	B1	Accept biased, unfair or suggestive
5(a)(ii)	Biased because she has only delivered it to the houses on her street	B1	Restricted sample. Biased Also accept Sample size too small
5(b)	Suitable question	B1	eg "What do you think is the latest time that under-16s should be indoors?"
	Suitable response section At least 3 tick boxes for times (gaps OK)	B1	eg before 9 pm 9-10 pm 10-11 pm (Condone continuous boundaries overlapping)

6(a)	$100-$ "their attempt at reading at $25 "$ Allow misread of scale	M1	$100-88,84-100,89-100$, $84,8988-100 \mathrm{OK}$
	12	A1	
6(b)	14	B1	Allow a value of 13.5 to 14.5 inclusive
6(c)	Locating and subtracting the quartiles	M1	$" 19 "-" 10 "$ (allow $\pm \frac{1}{2}$ square on each reading)
	8 to 10	A1	Depends on correct M mark if seen

7	$\frac{1}{12} \times \ldots$ or $\frac{2}{12} \times \ldots$ or $\frac{3}{12} \times \ldots$	M1	Any first probability multiplied by some other probability seen
$\frac{1}{12} \times \frac{1}{11}$ or $\frac{2}{12} \times \frac{2}{11}$ or $\frac{3}{12} \times \frac{2}{11}$	M1	Any correct product of two probabilities	
$\times 2$	M1	All correct products doubled (may come later)	
$\left(\frac{1}{12} \times \frac{1}{11}\right)+\left(\frac{2}{12} \times \frac{2}{11}\right)$ $+\left(\frac{3}{12} \times \frac{2}{11}\right)$	M1	Adding exactly 3 (or 6) correct products	
$=\frac{1}{6}$	A1	oe 0.16, 0.17, 16\% or 17% from correct method SC3 for question with replacement fully correct $\Rightarrow \frac{22}{144}$	

$8(\mathrm{a})$	Frequency density \times class width seen	M 1	
	$20,34,28,60$	A 2	2 or 3 correct A1
$8(\mathrm{~b})$	$\frac{1}{3} \times$ their "total" $(=$ " 74 "" $)$	M 1	Not $\frac{1}{3}$ of 222 alone
	$\frac{\text { "74"-"60" }}{\text { "28" }}=\frac{1}{2}$ of 10 minutes	M 1	Correct linear interpolation of T
	25 minutes	A 1	Watch for incorrect working leading to 25

