ASSESSMENT and
OUALIFICATIONS

General Certificate of Secondary Education

Mathematics 3302 Specification B

Module 5 Paper 2 Tier H 33005H2

Mark Scheme 2006 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

The following abbreviations are used on the mark scheme:

M Method marks awarded for a correct method.
A Accuracy marks awarded when following on from a correct method. It is not necessary always to see the method. This can be implied.

B Marks awarded independent of method.
M dep A method mark which is dependent on a previous method mark being awarded.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special Case. Marks awarded for a common misinterpretation which has some mathematical worth.
oe \quad Or equivalent.
eeoo Each error or omission.

MODULE 5 Paper 2 HIGHER TIER

1	Trial for $3<x<4$	B1	Correctly evaluated at least to the nearest whole number		
	Two trials for $3.8 \leq x \leq 3.9$ that "bracket" 72	B1	These trials correct or truncated to at least 1 dp		
			$\underline{x} \quad \underline{x^{3}+4 x}$		$\underline{x^{3}+4 x}$
			3.142 .191	3.6	61.056
			3.245 .568	3.7	65.453
			3.349 .137	3.8	70.072
				Allow	70 here
			3.452 .904	3.9	74.919
			$3.5 \quad 56.875$	3.85	72.466..
	Trial at 3.85 and answer 3.8	B1 dep	dep on previous		

2	Use of $\frac{1}{2}$ triangle	M1	Evidence such as 9 in Pythagoras
$18^{2}-9^{2}(=243)$	M1	Need - not +	
	M1		
	M1	Evidence of both M1s above 60° used	

3 3(a)	$5 x<18-3$ or 15	M1	Allow \leq but not = unless recovered in answer
	$x<3$	A1	$x=<3$ scores M1A0
3 (b)	$-3 \leq y<0$	M1	$(2 y=)-6,-5,-4,-3,-2,-1,(0)$ scores M1
	$-3,-2,-1$	A2	-1 each error, omission or extra

4	$15 \times 18 \times 50(=13500)$	M1	
	$12000 \div$ their 13500	M1 dep	Allow also $12 \div$ their 13500 for this M1
	0.88 to 0.90	A1	$0 . \dot{8}$

$5(\mathrm{a})$	$6 p^{7} q^{4}$	B2	-1 eeoo (count \times as one error)
5 5(b)	$p^{2}+7 p+2 p+14$	M1	For 3 correct terms
	$p^{2}+9 p+14$	A 1	
$5(\mathrm{c})$	$x+1=15-6 x$	M 1	Condone one error
	$7 x=14$	A 1	
	2	A 1 ft	One mistake only scores M1A0A1 ft

6(a)	Sight of tangent	M1	M2 for any complete method
	$\tan (x)=\frac{16}{7}$	M1	$\tan (x)=2.28(57 \ldots)$
	66.3 to 66.4	A1	Note: Measured angle is 64° Accept 66 if method seen
6(b)	$\cos 37^{\circ}$ or $\sin 53^{\circ}$	M1	M2 for any complete method
	$12.6 \div \cos 37^{\circ}$	M1	
	15.77 to 15.8	A1	

7	Equal arcs on DE and EF and intersecting arcs	M1	
	Bisector accurate to $\pm 2^{\circ}$	A1	

$8(\mathrm{a})$	$(0,14)$	B1	
$8(\mathrm{~b})$	$(2,0)$	B1	
	$(3.5,0)$	B1	Condone B as (3.5, 0) and C as (2, 0)
			If the zeros omitted, deduct a mark once only in the whole question

9	47	B1	
	Same segment	B1	On same arc On same chord

10		Substituting in formula (allow one error)	M1
Using wrong values for a, b or c			
Forgetting square root			
Miscopying formula			

$11(\mathrm{a})$ (i)	P and S	B1	oe
$11(\mathrm{a})$ (ii)	S	B1	oe
$11(\mathrm{~b})$	-2	B1	
$11(\mathrm{c})$	Sight of $\frac{1}{2}$ and (their -2$)$	M1	
	$\frac{1}{2} \times-2=-1$	A1	oe

12	$2 \times \pi \times 12$	M1	oe
	$\frac{40}{360} \times$ their $(2 \times \pi \times 12)$	M1 dep	
	8.37 to 8.38 or 8.4	A1	SC2 4.185 to 4.19 or 4.2 SC2 $66.98-67.02$ or 67.0 or 67

13	$\angle \mathrm{DTE}=19^{\circ}$	B1	
	$\mathrm{TE} / \sin 16=30 / \sin$ (their 19)	M1	or DT/sin $145=30 / \sin$ (their 19)
	$\begin{aligned} & \mathrm{TE}=30 \times \sin 16 / \sin (\text { their } 19) \\ & (=25.399 \ldots) \end{aligned}$	M1	$\begin{aligned} & \text { DT }=30 \times \sin 145 / \sin 19 \\ & (=52.85 \ldots) \end{aligned}$
	$h=$ their $\mathrm{TE} \times \sin 35$	M1	$h=$ their DT $\times \sin 16$
	14.5 to 14.6	A1	14.5 to 14.6 Allow 15 if M marks gained
	Alternative method		
	$\begin{aligned} & \mathrm{EF}=h / \tan 35 \text { or } h \tan 55 \\ & (=1.428 h) \end{aligned}$	M1	
	$\begin{aligned} & \mathrm{DF}=h / \tan 16 \text { or } h \tan 74 \\ & (=3.487 h) \end{aligned}$	M1	
	$h \tan 74-h \tan 55=30$	M1	oe
	$\frac{30}{2.059}$	M1	
	14.5 to 14.6	A1	Allow 15 if M marks gained

14(a)	2.87	B 1	
$14(\mathrm{~b})$	7 correct plots	B 1 ft	\pm half a square
	Smooth curve	B 1 ft	\pm half a square
$14(\mathrm{c})$	Reflection	B 1	
	In $x=180$	B 1	or B2 for any correct combination of transformations

15	$\frac{1}{2} \times 5 \times 5 \times \sin 60(=10.8 \ldots)$	M2	M1 for $h t=5 \times \sin 60$ M1 dep $\frac{1}{2} \times 5 \times$ their $h t$
(their 10.8$) \times 3$	M1 dep		
32.4 to 32.5	A1		
Alternative method			
$h t=5 \times \sin 60(=4.33)$	M1	or $\sqrt{ }\left(5^{2}-2.5^{2}\right)$	
$\frac{1}{2}(5+10) \times$ their 4.33	M2 dep		
32.4 to 32.5	A1		

16	$4 \pi r^{2}=1380$	M 1	
	$r=\sqrt{ }\left\{\frac{1380}{4 \pi}\right\}(=10.4 \ldots)$	M1 dep	
	$\mathrm{V}=\frac{4}{3} \pi(\text { their } 10.479)^{3}$	M 1	
	4820 to 4821	A 1	
$\mathrm{~cm}^{3}$	B1	UNITS MARK	

17	$3(y+6)-(y+7)[=2 y+11]$	M1	Condone lack of brackets May all be multiplied by 2
	$(y+7)(y+6)$	M1	As denominator or on right hand side
$2 \times$ their $(2 y+11)$ $=(y+7)(y+6)$	M1 dep	dep on both M1s	
$y^{2}+9 y+20=0$	A1		
$y=-4$ or -5	A1		

