GCSE 2004 November Series

ASSESSMENT and OUALIFICATIONS ALLIANCE

Mark Scheme

Mathematics B (3302)
 Module 3 Tier H

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website:
www.aqa.org.uk
Copyright © 2004 AQA and its licensors. All rights reserved.

[^0]The following abbreviations are used on the mark scheme:

M Method marks awarded for a correct method.

A Accuracy marks awarded when following on from a correct method. It is not necessary always to see the method. This can be implied.

B Marks awarded independent of method.

M dep A method mark which is dependent on a previous method mark being awarded.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special Case. Marks awarded for a common misinterpretation which has some mathematical worth.

Or equivalent.
ee0o
Each error or omission.

1	$750 \div(12+7+6)(=30)$	M1	Use of 9:10:11 is M0
	their 30×12 or $\times 7$ or $\times 6$	M1 dep	
	$360,210,180$	A1	All 3 needed in correct order 1 or 2 correct answers with no working implies M2A0

2(a)	$2.35621 \ldots$	B1	
(b)	2.36	B1 ft	ft their (a) if >3 sf Do not accept 2.360

3(a)	15000×1.02	M1	$15000+0.02 \times 15000$
	15300	A1	
(b)	Compound interest mentioned in words or formula $A\left(1+\frac{x}{100}\right)^{t}$	B1 B1	Any two answers, B1 for each Allow SC1 (£) 15918.12 seen and no other marks awarded
	Connects 3 years to the power of 3		
	Adding 2\% is (multiplying by) 1.02		

4	$24.60 \div 2(=12.30)$	M1	$\frac{2}{3}=24.60 \text { or } \frac{1}{3}=12.30$
	$(12.30) \times 3$	M1	If see both of these steps in this order $\begin{array}{r} 24.60 \times 3(=73.80) \\ (73.80) \div 2 \end{array}$ give M2
			$24.60 \div 0.66$ (66...) M2
			$24.60 \div 0.67$ M2
			$24.60 \div \frac{2}{3} \quad \text { M2 }$
	36.90	A1	36.9 is A0

5	$5.83 \times 10^{7} \div\left(5.47 \times 10^{5}\right)$	M1	Condone invisible brackets Allow if not in standard form and at least one correct or both 2 zeros out $\begin{array}{ll} (5.83 \times 7) \div(5.47 \times 5) & \text { M0 } \\ 40.81 \div 27.35 & \text { M0 } \end{array}$
	106.58...	A1	
	110 or 107	B1 ft	ft to 2 sf or 3 sf Allow 106.6 but no ft to 4 sf

33003H

6	$\begin{array}{\|l} 1.37 \times 0.88 \\ (\times \text { normal price }) \end{array}$	M1	$\begin{aligned} & \hline 1.37 \times 0.12(=0.1644) \\ & 1.37-(0.1644) \\ & \hline \end{aligned}$	
	1.2056 (\times normal price)	A1		
	Profit is 20.6%	B1	Accept 2120.56	
			Alternative method if money: $\begin{aligned} & £ 100 \times 1.37 \times 0.88 \\ & =£ 120.56 \end{aligned}$	$\begin{array}{r} \text { M1 } \\ \text { A1 } \\ \hline \end{array}$

7(a)	$P \propto w^{2}$ or $P=k w^{2}$	M1	
	$32=k \times 80^{2}(=6400 k)$	M1	
	$\begin{aligned} & k=\frac{32}{6400}=\frac{1}{200} \\ & \text { (So } P=\frac{w^{2}}{200} \text {) } \end{aligned}$	A1	or $P=0.005 w^{2}$ Only need equation if haven't seen $P=k w^{2}$ earlier
(b)	50	B1 ft	ft their $P=k w^{2}$
(c)	$\begin{aligned} & 18=\left(\frac{w^{2}}{200}\right) \\ & w^{2}=18 \times(200) \text { or } 3600 \end{aligned}$	M1	Puts $P=18$ in their $P=k w^{2}$ and isolates w^{2} term
	So $w=60$	A1	
(d)	Graph 1 (only if ft from their (a))	B1 ft	ft from their (a) eg Graph 2 from $P=k w$ in (a)
	(The relationship is) quadratic	B1 ft	or 'the value $(18,60)$ only fits graph 1 ' ft from above case would be: (The relationship is) linear'

8(a)	$\begin{aligned} & \frac{\text { their } \min 12.3}{\text { their } \max 15.6 \text { - their } \min 7.20} \\ & \frac{12.25}{15.65-7.195} \quad \text { if correct } \end{aligned}$	M1	Their min 12.3 must be >12.2 Their max 15.6 must be <15.7 Their min 7.20 must be >7.19
	Any 1 correct limit	M1	
	1.448846...	A1	1.451 .4491 .4488 etc
(b)	$3 \times$ their $\max 141+7 \times$ their $\max 150$ $3 \times 141.5+7 \times 150.5=1478$ if correct	M1	Their max 141 must be <142 Their max 150 must be <151
	Lower bound lift load $=1475$	B1	
	So this load cannot be safely carried	A1	Only award if fully correct: both 1475 and 1478 seen

33003H

9	$120=2(\times) 60$	M1	or $3(\times) 40$ or $5(\times) 24$
	$=2 \times 2 \times 2 \times 3 \times 5$	A1	Condone missing \times signs here
	$2^{3} \times 3 \times 5$	A1	Do not accept factor of 1

$10(\mathrm{a})$	$5750-5000$	M1	$\frac{5750}{5000} \times 100(=115)$ or 750 seen	
	$\frac{5750-5000}{5000} \times 100$	M1 dep	$(115)-100$ Alternative method: $750 \div 50$	
	15	A1		
(b)	i) 6250	B1		
	ii) 6349	B1		

11(a)	$\frac{1}{3} \times \frac{9}{1}$	M1	
	3	A1	Allow $\frac{3}{1}$ but not $\frac{9}{3}$
(b)	13	B1	

12	$2 \times 1 \frac{1}{4}-1 \frac{2}{3}$	M1	Allow $2 \times 1.25-1.67$ or $1.66(6 \ldots)$
	$\begin{aligned} & \left(2 \frac{1}{2}\right)-1 \frac{2}{3}=1+\frac{1}{2}-\frac{2}{3} \\ & =1+\frac{3}{6}-\frac{4}{6} \\ & \text { OR } \quad \frac{5}{2}-\frac{5}{3}=\frac{15}{6}-\frac{10}{6} \end{aligned}$	M1 dep	Do not accept decimals Deals with whole numbers and gets common denominator and at least one correct numerator Alternative method: $\begin{aligned} & \frac{1}{3}+\frac{1}{2} \\ & =\frac{2}{6}+\frac{3}{6} \end{aligned}$
	$\frac{5}{6}$	A1	oe $\begin{aligned} & \text { SC1 } 1 \frac{2}{3}-1 \frac{1}{4}= \pm \frac{5}{12} \\ & \text { or } \quad 1 \frac{1}{4}-1 \frac{2}{3}= \pm \frac{5}{12} \end{aligned}$

33003H

13(a)	Points plotted	B1	
	Smooth curve drawn through points	B 1 ft	Within $\frac{1}{2}$ square Condone ruler for first two and last two pairs of points
(b)	$-1.3 \leq x \leq-1.1$ $3.1 \leq x \leq 3.3$	B 1 ft B 1 ft	SC1 $(-1.2,0) ;(3.2,0)$ Do not ft if full marks in (a)
(c)	-5	B 1	Accept $(1,-5)$
(d)	Subtracts quadratics eg $x^{2}-2 x-4-\left(x^{2}-x-5\right)$	M1	$x^{2}-2 x-4+x-1=0$
	(So line is $y=1-x)$ Line drawn	B1 ft	
$-1.9 \leq x \leq-1.7$ $2.7 \leq x \leq 2.9$	A1	Do not accept from a quadratic graph	

14(a)	$\begin{aligned} & x=0 . \ddot{5} \\ & 100 x=51 . \ddot{5} \dot{1} \\ & 99 x=51 \end{aligned}$	M1	$\frac{51}{99}$
	$\frac{17}{33}$	A1	
(b)	$0.4 \check{5} \dot{1}=\frac{4}{10}+\left(\frac{17}{330}\right)$	M1	or uses x and $100 x$ to get $99 x=44.7$
	($\frac{132+17}{330}$)	M1 dep	For common denominator $\frac{(447)}{990}$
	$\frac{149}{330}$	A1	

33003H

$15(\mathrm{a})$	$27^{-\frac{2}{3}}=\frac{1}{27^{\frac{2}{3}}}$ or 3^{-2} or $\frac{1}{3^{2}}$	M1			
	$\frac{1}{9}$	A 1			
(b)	$\frac{10 \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}}$	M1			
	$2 \sqrt{5}$	A1			
(c)	$\sqrt{125}=5 \sqrt{5}$ or $\sqrt{45}=3 \sqrt{5}$	B1	$\frac{(\sqrt{125}-\sqrt{45})(\sqrt{125}-\sqrt{45})}{(\sqrt{125}+\sqrt{45})}(\sqrt{125}-\sqrt{45})$	M1	A1
:---		$\frac{2 \sqrt{5}}{8 \sqrt{5}}$	B1	$\frac{125-2 \sqrt{125} \sqrt{45}+45}{125-45}$	A1
:---	:---	:---	:---		
	$\frac{1}{4}$	B1 dep	$\frac{1}{4}$		

[^0]: COPYRIGHT
 AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 Set and published by the Assessment and Qualifications Alliance.

 The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

