GCSE 2004 June Series

ASSESSMENT and OUALIFICATIONS ALLIANCE

Mark Scheme

Mathematics B (3302)
 Module 5 Paper 2 Tier H

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 01619531170
or
download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The following abbreviations are used on the mark scheme:

M Method marks awarded for a correct method.

A Accuracy marks awarded when following on from a correct method. It is not necessary always to see the method. This can be implied.

B
Marks awarded independent of method.

M dep
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special Case. Marks awarded for a common misinterpretation which has some mathematical worth.

Or equivalent.
ee0o Each error or omission

1	Trial for $x>4$	B1	All trials correctly evaluated to at least 1 dp , rounded or truncated
	Trial for $4<x \leq 5$	B1	
	Trials for $4.7 \leq x \leq 4.85$ that bracket the answer	B1	$\begin{array}{rlrl} 4.6 & \rightarrow 4.81 & 4.7 & \rightarrow 4.91 \\ 4.75 & \rightarrow 4.96 & 4.76 & \rightarrow 4.97 \end{array}$
	Trial for $4.75 \leq x<4.8$ and answer 4.8	B1	$\begin{aligned} 4.77 & \rightarrow 4.979 \ldots \quad 4.78 \rightarrow 4.989 \ldots \\ 4.79 & \rightarrow 4.998 \ldots \\ 4.8 & \rightarrow 5.008 \ldots \text { or } 5 \\ 4.85 & \rightarrow 5.056 \ldots \end{aligned}$

2(a)	$s^{3}+6 s$	B2	B1 for s^{3} or $(+) 6 s$
(b)	i) $6 t^{4} u^{3}$	B2	-1 eeoo
	ii) $8 c^{12}$	B2	B1 for 8 or c^{12}

3(a)	$2 x \geq-2$	M1	Allow $>$ but not = unless recovered in answer
	$x \geq-1$	A 1	
(b)	$x<2$	B 1	oe condone change of letter
(c)	$-1,0,1$	B 1 ft	ft their (a) and/or (b)

4(a)	$\pi\left(\frac{1}{2} 7.5\right)^{2} 11.6$	M2	M1 for $\pi\left(\frac{1}{2} 7.5\right)^{2}$ or $44.1(\ldots)$ seen or $44.1786(\pi)$ or $44.1562(3.14)$	
	512.2 to 512.5...	A1	or 512	
			$\begin{aligned} & \pi \times(3 \ldots)^{2} \times 11.6 \text { scores M1 } \\ & \pi(7.5)^{2} 11.6 \rightarrow 2048 \text { to } 2051 \ldots \mathrm{SC} 1 \\ & \hline \end{aligned}$	
(b)	(circumference $=$) $\pi 7.5$	M1	$23.56 \ldots$ or 23.55 if used 3.14	
	(their 23.56) +1	M1 dep	or (their 23.56) $\times 11.6$ M1 dep add 11.6 M1 dep 284.78 to 285 A1	
	(their 24.56) $\times 11.6$	M1 dep		
	284.78 to 285	A1		

5	$\sin (x)=\frac{20}{230}$	M1	
	$0.0869(56 \ldots)$	A1	or 0.0870
	4.99 or 5 or $4.9885 \ldots$	A1	NB watch out for tangent
		Ans 5 from scale drawing scores 3 $0.08706 \ldots$ or 5.542 as final answer scores M1A1A0	

33005/H2

6	$y(y+5)$	M1	
	0	A1	Trial \& improvement giving 0 or -5 only: SC1
	-5	A1	
7	$\frac{60}{15}=\frac{h}{2.7}$	M2	M1 for $\frac{60}{15}$ or $\frac{15}{60}$ or $\frac{2.7}{15}$ or $\frac{15}{2.7}$
	10.8	A1	
			Trig method: $\operatorname{Tan} G=\frac{2.7}{15}$ M1 (10.2 ${ }^{\circ}$)
			$(h=) 60 \times \tan ($ their 10.2) M1 dep
			10.79 or 10.8 A1

8	$V=x^{2} h$	M1	oe
	$x^{2}=\frac{V}{h}$	M1 dep	
	$x=\sqrt{\frac{V}{h}}$	A1	

9	$3(3 x+1)-2(2 x+5)$	M1	Could have 6 as denominator here Condone lack of brackets
	$9 x+3-4 x-10$	A1	
	(their $5 x-7)=6$	M1 dep	
$x=2.6$	A1	or $2 \frac{3}{5}$	

$10(\mathrm{a})$	$0.51(2)$	B 1	
(b)	Correct plots	B 1 ft	$\pm \frac{1}{2}$ square, ft their (a)
	Smooth curve	B 1 ft	
(c)	1.2	B 1 ft	$\pm \frac{1}{2}$ square

11	$A B=A D \quad$ sides of square	B1	Must give the reason
	Angle $A Q B=$ angle $A P D=90^{\circ}$	B1	Must have $=90^{\circ}$ oe
	Angle $B A Q=$ angle $A D P=90-y$	B1	Must have $=90-y$ oe
	AAS with the above 3 statements	B1	Accept statements without reasons for this mark

33005/H2

12(a)	Gradient of $P Q=\frac{y \text {-difference }}{x \text {-difference }}$	M1	$\left(=\frac{8}{6}\right.$ oe $)$ Perp. grad. $=\frac{-1}{(\text { their } 4 / 3)}$
	M1 dep	Drawing method: Perpendicular line drawn and attempt at finding its gradient M2	
	$\frac{-3}{4}$	A1	oe
(b)	$y=\left(\right.$ their $\left.-\frac{3}{4}\right) x+\mathrm{c}$	M1	
	$y=-\frac{3}{4} x+\frac{3}{2}$	A1	oe Accept 1.4 to 1.6 for $\frac{3}{2}$ from graph

13(a)	i) $-\mathbf{b}+\mathbf{a}$ or $\mathbf{a}-\mathbf{b}$	B 1	
	ii) $\mathbf{b}-\frac{1}{2} \mathbf{a}$	B 1	oe
(b)	$\overrightarrow{B N}=\overrightarrow{B M}+\overrightarrow{M N}=\overrightarrow{B M}+\overrightarrow{A M}$	M 1	oe
	$=\frac{1}{2} \mathbf{a}+\mathbf{b}-\frac{1}{2} \mathbf{a}$	A 1	
(c)	$\overrightarrow{O N}=2 \overrightarrow{O B}$	B 1	or $O B N$ a straight line or $B N=O B$ or B is midpoint of $O N$

14	$3 x^{2}=x+2$	M1	
	$3 x^{2}-x-2=0$	A 1	
$(3 x+2)(x-1)=0$	M 1	or $[1 \pm \sqrt{ }(1--24)] / 6$	
	A 1	Accept -0.66 or -0.67	
	A 1 ft	Must match appropriate values of y with x	
		$x=1, y=3$ without working $\ldots \mathrm{SC} 1$	

15	$A C^{2}=7^{2}+9^{2}-2 \times 9 \times 7$ $\times \cos 75$	M 1	
	$A C^{2}=97.3888 \ldots$	A 1	Accept 97.4
	$D C^{2}=(\text { their } A C)^{2}-6^{2}$	M 1	
$D C=7.8(35 \ldots)$	A 1 ft	or 7.84	
	$29.8(35 \ldots)$	A 1 ft	or 29.84 or 30 with correct working

33005/H2

16	Extra volume $=50 \times 34 \times 4.5$	M 1	7650
	1912.5	A 1	
	$\frac{4}{3} \pi r^{3}=($ their 1912.5$)$ or $($ their 7650$)$	M1	Must be from volume calculation Allow $\frac{4}{3} \pi r^{3}=($ their 7650$)$ for this M1
	$r^{3}=(3 \times 1912.5) \div 4 \pi$	M1	Allow $(3 \times 7650) \div 4 \pi$
	$r=7.7$	A 1	

