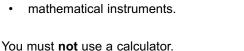

Surname	Other	Names				
Centre Number			Candida	ate Number		
Candidate Signature						

General Certificate of Secondary Education June 2004


MATHEMATICS (MODULAR) (SPECIFICATION B) 33005/H1 Module 5 Higher Tier Paper 1 Non-Calculator

Tuesday 8 June 2004 1.30 pm to 2.45 pm

In addition to this paper you will require:

mathematical instruments.

Time allowed: 1 hour 15 minutes

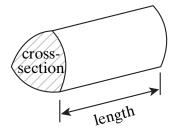
Instructions

- Use blue or black ink or ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this booklet.

Information

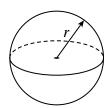
- The maximum mark for this paper is 70.
- Mark allocations are shown in brackets.
- Additional answer paper, graph paper and tracing paper will be issued on request and must be tagged securely to this answer booklet.

•			
^	М	W71	α

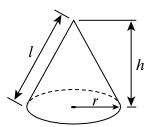

• In all calculations, show clearly how you work out your answer.

For Examiner's Use				
Pages	Mark			
3				
4 – 5				
6 – 7				
8 – 9				
10 – 11				
12 – 13				
14 – 15				
16 – 17				
18 – 19				
20 – 21				
TOTAL				
Examiner's Initials				

Formulae Sheet: Higher Tier


You may need to use the following formulae:

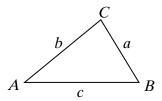
Volume of prism = area of cross-section \times length


Volume of sphere =
$$\frac{4}{3} \pi r^3$$

Surface area of sphere = $4 \pi r^2$

Volume of cone =
$$\frac{1}{3} \pi r^2 h$$

Curved surface area of cone = $\pi r l$



In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \ne 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Answer all	questions	in	the	spaces	provided

A sequence of numbers is shown.							
		2	5	8	11	14	
(a)	Find an expression	n for the	e nth te	rm of th	ne sequer	nce.	
			•••••	•••••	•••••		
			•••••		•••••		•••••
		Answe	r	•••••			(2 marks)
(b)	Explain why 99 w	ill not b	e a tern	n in this	sequenc	e.	
		••••••	•••••	•••••			
		••••••	•••••	•••••			
			•••••	•••••			(2 marks)

TURN OVER FOR THE NEXT QUESTION

1

(a)	The line LM is drawn below.	
	L — M	
	Use ruler and compasses to construct the perpendicular bisector of <i>LM</i> .	
	You must show clearly all your construction arcs.	(2 marks)
(b)	Complete the sentence.	
(0)		
	The perpendicular bisector of LM is the locus of points which are	••••••
		(1 mark)

2

3	Here	e is a list of qua	drilaterals.				
		kite	rectangle	rhombus	square	trapezium	
						name from the list. e spaces provided.	
	(a)	One pair of sid The other two					
			Answer.				(1 mark)
	(b)	All the angles Only opposite					
			Answer.				(1 mark)
	(c)	All the sides a The diagonals					
			Answer.	•••••			(1 mark)

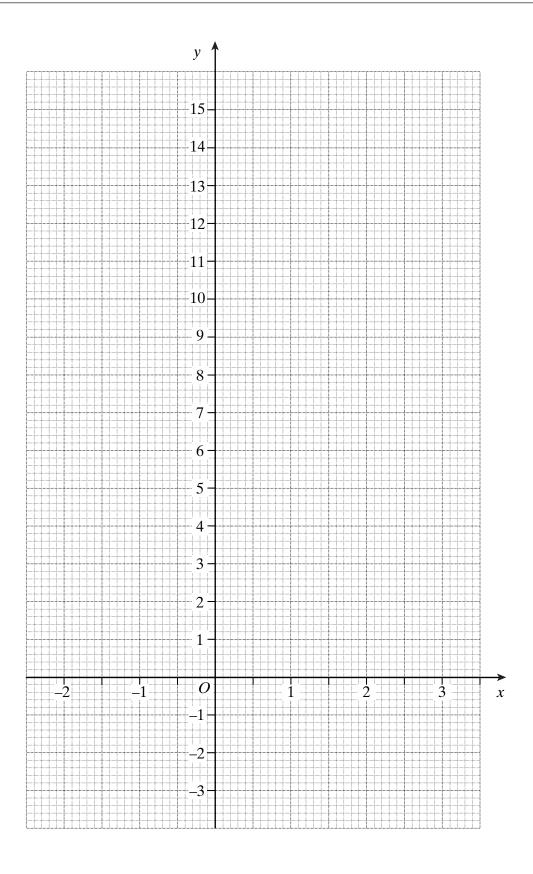
Turn over ▶

4 (a) Complete the table of values for $y = 2x^2 - 4x - 1$

X	-2	-1	0	1	2	3
y	15		-1		-1	5

•••••
•••••
•••••
rks)

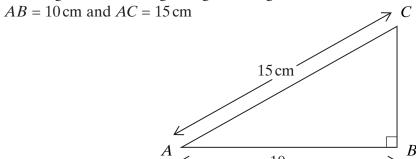
(b) On the grid opposite, draw the graph of $y = 2x^2 - 4x - 1$ for values of x from -2 to +3.


(2 marks)

(c) An approximate solution of the equation $2x^2 - 4x - 1 = 0$ is x = 2.2

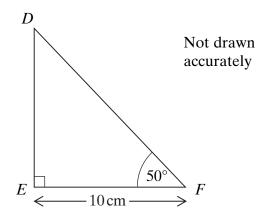
1)	Explain how you can find this from the graph.	
	(1	 mark)

(ii) Use your graph to write down another solution of this equation.


Answer $x = \dots (1 \text{ mark})$

Turn over

5 (a) The diagram shows a right-angled triangle *ABC*.

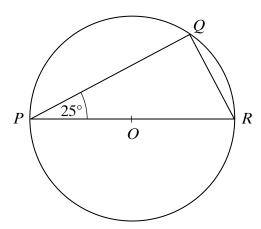


Not drawn accurately

Leave your answer as a square root.

 •••••	•••••	••••••••••	•••••	••••••
 •••••	•••••	••••••	•••••	••••••
Answer	• • • • • • • • • • • • • • • • • • • •		cm	(3 marks)

(b) The diagram shows a right-angled triangle DEF. EF = 10 cm Angle $F = 50^{\circ}$



Angle	Sine	Cosine	Tangent
40°	0.643	0.766	0.839
50°	0.766	0.643	1.192

Use the table of data	to work out the lea	ngth of DE .		
Ar	swer		cm	(3 marks)

6 (a) In the diagram, O is the centre of the circle and P, Q and R are points on the circumference.

Angle $P = 25^{\circ}$

Not drawn accurately

|--|--|--|--|

Answer degrees (2 marks)

(b) A, B, C and D are four points on the circumference of another circle. AC meets BD at X. Angle $ABD = 56^{\circ}$ and angle $CXD = 80^{\circ}$

Not drawn accurately

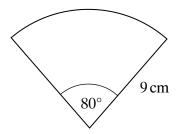
ork out the value of angle d .	
ou must show all your working.	
, e	
	••••
	••••

Answer degrees (3 marks)

Turn over

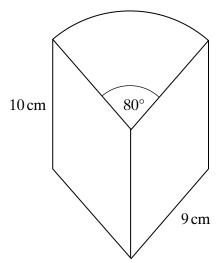
7	(a)	Factorise	$x^2 - 10x + 25$	
			Answer	(2 marks)
	(b)	Factorise	$2x^2 + 3x - 5$	
			Answer	(2
			Allswei	(Z marks)

8 Solve the simultaneous equations


$$4x + 3y = 5$$
$$2x - 5y = 9$$

You must show your working.	
Do not use trial and improvement.	
•	
	•••••
	•••••
	•••••
	•••••
	•••••
Answer $x =$	

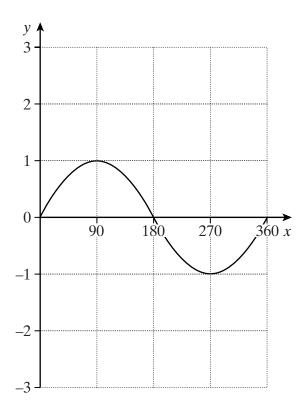
TURN OVER FOR THE NEXT QUESTION


9 (a) The diagram shows a sector of a circle of radius 9 centimetres.

Not drawn accurately

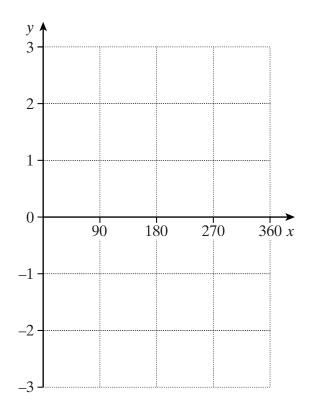
Find the perimeter of the sector.	
Give your answer in terms of π .	
Answercm	

(b) The cross-section of a prism is a sector of a circle, of radius 9 centimetres, as shown. The height of the prism is 10 centimetres.

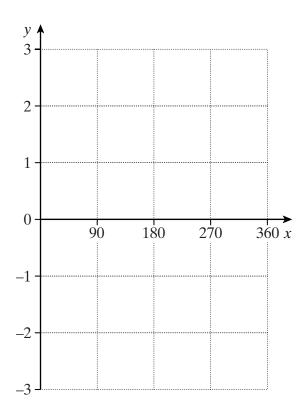


Not drawn accurately

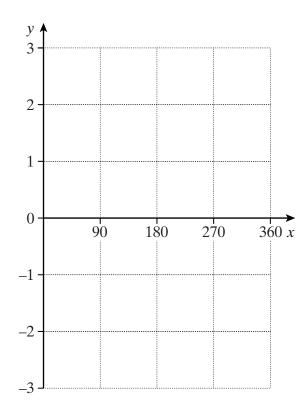
Calculate the volume of the prism.	
Give your answer in terms of π .	
•	
	•••••
	•••••
	•••••
	•••••
Answer	
Answer(4	marks)



10 The diagram shows the graph of $y = \sin x^{\circ}$ for $0 \le x \le 360$


On the axes below sketch the following graphs.

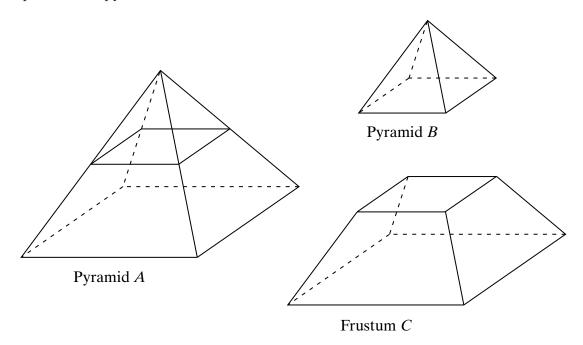
(a) $y = 2 \sin x^{\circ}$ for $0 \le x \le 360$


(1 mark)

(b) $y = \sin 2x^{\circ} \text{ for } 0 \le x \le 360$

(1 mark)

(c) $y = 2 + \sin x^{\circ} \text{ for } 0 \le x \le 360$



(1 mark)

Turn over ▶

11 A square-based pyramid *A* is divided into two parts: a square-based pyramid *B* and a frustum *C*, as shown.

Pyramid A is similar to pyramid B.

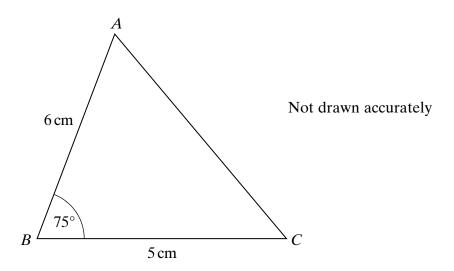
The base of pyramid A is a square of side 10 cm. The base of pyramid B is a square of side 5 cm.

The vertical height of pyramid A is 12 cm.

(a) You are given the formula

Volume of a pyramid = $\frac{1}{3}$ × area of base × vertical height	
Calculate the volume of the frustum <i>C</i> .	
	•••••••••
Answer cm ³	(4 marks)

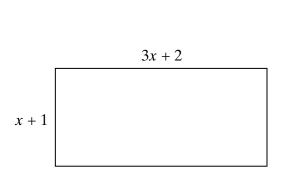
(b)	Express the volume of the frustum C as a fraction of the volume of the larger pyramid A .
	Give your answer in its simplest form.
	Answer

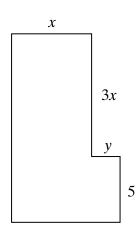

TURN OVER FOR THE NEXT QUESTION

12	(a)	Simplify	$\frac{6(x+5)^2}{2(x+5)}$	
			Answer	(2 marks)
	(b)	Simplify	$\frac{x^2 - 9}{x^2 + 3x}$	
			Answer	(3 marks)

Answer

13 The diagram shows a triangle *ABC*. $AB = 6 \text{ cm}, BC = 5 \text{ cm} \text{ and angle } B = 75^{\circ}$


You are given that $\sin 75^{\circ} = 0.966$ to 3 significant figures.


Calculate the area of the triangle.
Give your answer to a suitable degree of accuracy.
Answer cm ² (3 marks)

14 The diagrams show a rectangle and an L shape.All the angles are right angles.All lengths are in centimetres.The shapes are equal in area.

Diagrams not to scale

Calculate the value of <i>y</i> .
Answer cm (6 marks)

15	(a)	Find the values of a and b such that
		$x^2 + 6x - 3 = (x + a)^2 + b$
		Answer $a =, b =$
	(b)	Hence, or otherwise, solve the equation
		$x^2 + 6x - 3 = 0$
		giving your answers in surd form.
		Answer (3 marks)

END OF QUESTIONS

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE

THERE ARE NO QUESTIONS PRINTED ON THIS PAGE