GCSE 2004 June Series

ASSESSMENT and OUALIFICATIONS ALLIANCE

Mark Scheme

Mathematics B (3302)
 Module 3 Tier H

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from:

Publications Department, Aldon House, 39, Heald Grove, Rusholme, Manchester, M14 4NA Tel: 01619531170
or
download from the AQA website: www.aqa.org.uk

Copyright © 2004 AQA and its licensors

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The following abbreviations are used on the mark scheme:

M Method marks awarded for a correct method.

A Accuracy marks awarded when following on from a correct method. It is not necessary always to see the method. This can be implied.

B
Marks awarded independent of method.

M dep
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special Case. Marks awarded for a common misinterpretation which has some mathematical worth.

Or equivalent.
ee0o Each error or omission

1	$\frac{4.2790 \ldots}{13.88}$	M1	
	$=0.308$	A1	Accept 0.308... Ignore further working SC1 0.31

2	Profit is $£ 281-£ 150=(=£ 131)$	M1	Must be a profit	
	$\%$ profit $=\frac{(\text { their } 131)}{150} \times 100$	M1 dep		
	$=87.3 \%$	A1	Accept 87%	M1
		$\frac{\text { (their } 281)}{150} \times 100$		
187.3%	A1			

3(a)	200×1.15	M1	
	$=230 \mathrm{~g}$	A1	
(b)	$\begin{aligned} & (\text { Mass at } 1 \mathrm{pm} \text { on day } 2=\text {) } \\ & 230 \times 1.15 \end{aligned}$	M1	or 230×1.15^{n} where $n \geq 2$
	$=264.5 \mathrm{~g}$		
	$\begin{aligned} & (\text { Mass at } 1 \mathrm{pm} \text { on day } 3=) \\ & 264.5 \times 1.15 \\ & \hline \end{aligned}$		
	$=304.175 \mathrm{~g}$		
	Mass at 1 pm on day 4 $=304.175^{1} \times 1.15$		
	$=349.80125 \mathrm{~g}$	A1	Accept 349 or 350
	Mass at 1 pm on day 5 $=349.80125 \times 1.15$		
	$=402.2714375 \mathrm{~g}$		
	After 5 days	A1	If all correct working and 4 (further) days accept No marks for incorrect method OR 1.15, 1.3225, 1.520... M1 1.749 A1 $2.01 \Rightarrow 5$ days

4	$€ 2.80=1.12$ of pre-VAT price or 112%	M1	or $\frac{2.80}{1.12}(=2.50)$	M1
	VAT $=\frac{12}{112} \times € 2.80$	M1	VAT $=2.80-($ their 2.50$)$	M1
	$=€ 0.30$	A1	$=€ 0.30$ or $€ 0.3$	A1

5	$\frac{1.6 \times 10^{10}}{276 \times 10^{6}}$	M1	Division
	$=58$	A2	Accept 57.97 A1 for sight of $5797 \ldots$ or $58 \ldots$

6	MAX $_{\text {diff }}=$ MAX $_{\text {Mark }}-$ Min $_{\text {Eileen }}$		
	$=203.5-184.5$	M1	M1 for max - min and at least one correct
	$=19 \mathrm{~cm}$	A1	Accept $18.99 \ldots$

7	$\begin{aligned} x & =0.47 \\ 10 x & =4.77 \end{aligned}$	M1	Both needed correct	
	$9 x=4.3$			
	$x=\frac{4.3}{9}$	M1		
	$=\frac{43}{90}$	A1	$\begin{aligned} \text { or } \quad 10 x & =4.77 \\ 100 x & =47.77 \end{aligned}$	M1
			$90 x=43$	M1
			$x=\frac{43}{90}$	A1
			$\text { or } \begin{aligned} x & =0.7 \\ 10 x & =7.7 \end{aligned}$	M1
			$9 x=7$	
			$x=\frac{7}{9}$	
			$=\frac{4}{10}+\frac{7}{90}$	M1
			$=\frac{43}{90}$	A1

8 8(a)	$V \alpha \frac{1}{p}$ or $v=k \frac{1}{p}$	M1	OR $p \alpha \frac{1}{v}$
	When $v=5, \mathrm{p}=150000$		
	$5=\frac{k}{150000}$	M 1	
	$k=750000$		
	$\therefore v=\frac{750000}{p}$	A 1	or $p v=750000$

33003H

8 8(b)	$p=250000 \Rightarrow$		
	$v=\frac{750000}{250000}$		
	$v=3$	B 1 ft	If M2 gained above
(c)	$v=300$		
	$300=\frac{750000}{p}$	M 1	If M2 gained above
	$p=\frac{750000}{300}$		
	$p=2500$	A 1	

9	$\begin{aligned} & \operatorname{Cost}(\mathfrak{£}) 2001=\frac{\text { USA price }}{1.42} \\ & =0.704 \ldots \text { of USA price } \end{aligned}$		or if cost \$100 in 2001 Cost in 2001 is $£ \frac{100}{1.42}=£ 70.42$	
	$\begin{aligned} & \text { Cost (\$) } 2002 \\ & =0.82 \text { of USA price in } 2001 \\ & \hline \end{aligned}$	B1	In 2002, cost is \$82	B1
	$\begin{aligned} & \text { Cost }(£) 2002 \\ & =\frac{0.82}{1.64} \text { of USA price in } 2001 \end{aligned}$	M1	Which is $£ \frac{82}{1.64}$	M1
	$=0.5$ of USA price in 2001	A1	= £50	A1
	Reduction is $0.204 \ldots$ of USA price in 2001		Reduction is $£ 20.42$	
	$\% \text { reduction is } \frac{0.204 \ldots}{0.704 \ldots} \times 100$	M1	$\% \text { reduction is } \frac{20.42 \ldots}{70.42 \ldots} \times 100$	
	= 29.0%	A1	= 29.0\%	A1
			$\begin{aligned} & \text { OR in } 2002 \text { cost is } \$ 82 \\ & \text { Old cost was } \frac{1.42}{1.64} \times \$ 82 \\ & =\$ 71 \\ & \text { Reduction is } 100-71 \\ & =29 \% \end{aligned}$	$\begin{gathered} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{gathered}$
			OR in 2002 cost is $\$ 82$ Reduction is $\$ 82 \times \frac{0.22}{1.64}$ = \$11 2002 cost is $\$ 82-11$ $=\$ 71$ Reduction is $100-71$ $=29 \%$	B1 M1 A1 M1 A1

33003H

10	$2: 3 \Rightarrow 5$ parts		
	$60 \times \frac{3}{5}$	M1	
	$=36$	A1	SC1 24 or 24 and 36

11(a)	$\overline{\frac{300 \times 8}{0.4}}$	B1	At least 2 correct
	$=\frac{2400}{0.4}$	B1	Needs both terms correct
	$=6000$	B1	Accept $\frac{300 \times 10}{0.5}=6000 \quad$ B3
(b)	$\frac{13}{3}-\frac{7}{5}$	M1	Allow one error in 13 or 7
	$=\frac{65}{15}-\frac{21}{15}$	M1	Allow one error in 65 or 21
	$=\frac{44}{15} \text { or } 2 \frac{14}{15}$	A1	Accept either
			$\begin{array}{ll} \text { or } 3 \frac{1}{3}-\frac{2}{5} \text { oe } & \\ =(3) \frac{5}{15}(-) \frac{6}{15} \text { or }(4) \frac{5}{15}(-)(1) \frac{6}{15} \text { M1 } \\ =3 \frac{-1}{15} & \text { M1 } \\ =2 \frac{14}{15} & \text { A1 } \\ \text { SC1 } 3 \frac{1}{15} & \\ 4.33 \ldots-1.4 & \text { M1 } \end{array}$
(c)	$\frac{\frac{1}{4} \times 16}{\frac{1}{27} \times(3)^{2}}=\frac{4}{\frac{1}{3}}$	B1	Need both, not necessarily division
	= $4 \times \frac{3}{1}$	M1	Must be $\frac{4}{\frac{1}{x}}=4 x \quad \frac{16}{4} \times \frac{27}{9} \quad$ M1
	$=12$	A1	$\begin{array}{ll} \text { OR } \frac{4}{\frac{9}{27}}=4 \times \frac{27}{9} & \text { M1 } \\ =\frac{108}{9} \text { or } 4 \times 3 & \text { A1 } \\ =12 & \text { A1 } \end{array}$
(d)	$42.7 \times 10^{5}-2.9 \times 10^{5}$	M1	Conversion to the same power
	$=39.8 \times 10^{5}$		
	$=3.98 \times 10^{6}$	A1	oe eg $3980000,39.8 \times 10^{5}$

33003H

12(a)	6	B1	
(b)	Plot points	B1	
	Draw curve	B1	
(c)	$x=1.4$ and -1.4	B1	
(d)	$\left(3 x^{2}-6\right)-\left(3 x^{2}-5 x-6\right)$	M1	Sight of $(\pm) 5 x(+k)$
	$=5 x$		
	Draw $y=5 x$	B1 ft	
	$x=2.5,-0.8$	A1	Accept 2.4 to 2.55 and -0.75 to -0.85

13(a)	$2 \sqrt{2}+5 \sqrt{2}$	B1	Either
	$=7 \sqrt{2}$	B1	
(b)	$\sqrt{24}+\sqrt{54}=2 \sqrt{6}+3 \sqrt{6}$		
	$=5 \sqrt{6}$	B1	$\begin{array}{r} \sqrt{192}+\sqrt{1200}+\sqrt{432}+\sqrt{2700} \\ \text { B1 } \end{array}$
	$\begin{aligned} & (\sqrt{8}+\sqrt{50})(\sqrt{24}+\sqrt{54}) \\ & =7 \sqrt{2} \times 5 \sqrt{6} \end{aligned}$		
	$\begin{aligned} & =35 \sqrt{12} \text { or } 35 \sqrt{2} \sqrt{6} \text { or } \\ & 35 \sqrt{4} \sqrt{3} \end{aligned}$	B1	$8 \sqrt{3}+20 \sqrt{3}+12 \sqrt{3}+30 \sqrt{3}$ B1
	$=70 \sqrt{3}$	B1	

$14(\mathrm{a})$	$7 \times \frac{1}{125}$	B1	Either
	$=\frac{7}{125}$	B 1	
(b)	4^{9}	M1	OR $\frac{2^{14}}{2^{-4}}$
	$=2^{18}$	A 1	
(c)	$\frac{1}{81^{\frac{3}{4}}}$	M 1	Handling minus power
	$=\frac{1}{\left(3^{4}\right)^{\frac{3}{4}}}$ or $\frac{1}{3^{3}}$		
$=\frac{1}{27}$	A 1	$81=3^{4}$	

