

General Certificate of Secondary Education

Mathematics 4302
 Specification B

Module 5 Paper 2 Tier H 43005/2H

Mark Scheme
2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2008 AQA and its licensors. All rights reserved.
COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The following abbreviations are used on the mark scheme:

M
Method marks awarded for a correct method.
A Accuracy marks awarded when following on from a correct method. It is not necessary always to see the method. This can be implied.

B Marks awarded independent of method.
M dep A method mark which is dependent on a previous method mark being awarded.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special Case. Marks awarded for a common misinterpretation which has some mathematical worth.
$\mathbf{0 e} \quad$ Or equivalent.
eeoo Each error or omission.

1	$\frac{1}{2} \times 10.4 \times 5.5$	M1	M1 for any complete method
	28.6	A1	If angle C $\left(=42 .(12)^{\circ}\right)$ used then answer 28.5(..)

2(a)	$5 x-3 x$ or $7+4$	M1	or $3 x-5 x$ or $-4-7$
	$2 x=11$	A1	oe
	$5 \frac{1}{2}$ or 5.5 or $\frac{11}{2}$	A1	
2 2(b)	$13-5 y=4 \times 3$	M1	$\frac{13}{3}-\frac{5 y}{3}=4$
	$-5 y=-1$	A 1	or $5 y=1$ or $\frac{-5 y}{3}=\frac{-1}{3}$ oe
	$\frac{1}{5}$ or 0.2	A 1	

3(a)	Correct reflection	B2	B1 for reflection in any horizontal line or in $x=2$
3(b)	Correct translation	B1	

4(a)	127	B 1	
4(b)	$n+8, n+9, n+10$ oe	B 2	oe B1 for any one correct
4(c)	$n+n+8+n+9+n+10$	M 1 ft	oe
	$4 n+27$	A 1	SC 1 for $3 n+27$
4(d)	$4 n$ is always even	M1	Either 3 odds +1 even, or 1 odd +3 evens
	(27 is odd,) even + odd $=$ odd	A1	3 odds odd, odd + even $=$ odd 3 evens $=$ even, odd + even $=$ odd SC1 either of these complete arguments but not both

5	$360 \div 8(=45)$	M1	Complete method for interior angle of octagon (= 135)
	$360 \div 5(=72)$	M1	Complete method for interior angle of pentagon (= 108)
	their 45 + their 72	M1 dep	Dep on both M1s $360-$ (their 135 + their 108)
117	A1	117	

6	$c-2$ or $\frac{c}{5}=d+\frac{2}{5}$ oe	M1	
	$\frac{c-2}{5}$	A1	oe eg $\frac{c}{5}-0.4$

7 (a)	1 correct plot	M1	$\begin{array}{c}{(-1,-7)(0,-5)(1,-3)}\\ {(2,-1)(3,1)(4,3)(5,5)}\end{array}$}{}
	2nd correct plot	M1	
	Correct line from -1 to +5	A1	Fully correct line scores all 3 marks Line must be ruled
	Alternate method		
	Line with gradient 2	M1	
	Line through $(0,-5)$	M1	
	Correct line from -1 to +5	A1	
7 (b)	$x=3.3$	B1	$\pm 0.1 \mathrm{ft}$ their line to both marks for non-integer values but max B1 for integer values
	$y=1.7$	B1	

8	9×2 or 2×3 or 9×4 or 3×4	M1	
A correct combination to find area of cross-section	M1		
their 24×65	M1 dep		
1560	A1		
cm^{3}	B1		
	Alternate method 1		
$9 \times 2 \times 65(=1170)$	M1		
$3 \times 2 \times 65(=390)$	M1		
their $1170+$ their 390	M1 dep	or another valid summation	
1560	A1		
cm^{3}	B1		
Alternate method 2			
$3 \times 2 \times 65(=390)$	M1		
their 390×4	M2 dep		
1560	A1		
cm^{3}	B1		
Alternate method 3			
$9 \times 4 \times 65(=2340)$	M1		
$3 \times 2 \times 65(=390)$	M1		
their $2340-$ their (2×390)	M1 dep		
1560	A1		
cm^{3}			

9(a)	Equal arcs above \& below $P Q$	M1	
	Correct line drawn	A1	At least 1 cm long, crossing $P Q$
9 (b)	Equidistant from P and Q	B1	oe

$10(\mathrm{a})$	x^{4}	B1	
$10(\mathrm{~b})$	$6 y^{7} z^{5}$	B2	B1 for either y^{7} or z^{5}
$10(\mathrm{c})$	$8 p^{9} r^{6}$	B2	B1 for either p^{9} or r^{6}

$11(\mathrm{a})$	Tangent	M1	Scale drawing	M0
	$\frac{11}{16}(=0.6875)$	M1 dep		
	$34.5(\ldots)$	A1	55 or 55.5 or 55.49	SC1
	$\frac{D F}{24}=\cos 64$	M1		
	$24 \times \cos 64$	M1 dep		
	$10.5(209 \ldots)$	A1		
	10.5 (or 11 with working)	B1 ft	Accuracy mark	

12	$1.20 \times 30(=36)$ oe	M1	or $1.10 \times 15(=16.5)$ oe
	their $36 \times$ their 16.5	M1	
	594	A1	
	Alternative method		
1.2×1.1	M1	or 1.32 seen	
their $1.32 \times 30 \times 15$	M1		
	594	A1	

13(a)	$(5 x+1)(x+7)$	B2	Ignore putting $=0$ B1 for $(5 x+7)(x+1)$
$13(\mathrm{~b})$	$3\left(y^{2}-4 z^{2}\right)$	M1	
	$3(y-2 z)(y+2 z)$	A2	A1 for wrong signs
	$(3 y-6 z)(y+2 z)$ or $(y-2 z)(3 y+6 z)$ earns M1A1A0		

14	$\frac{Y Z}{\sin 35}=\frac{25}{\sin 102}$	M1	oe
$25 \times \frac{\sin 35}{\sin 102}$	M1		
	$[14.65,14.7]$	A1	Allow 15 with working

15	$\overrightarrow{\mathrm{MC}}=\mathbf{a}$	M 1	Could be done without vectors: $\mathrm{MC}=\mathrm{OA}$
	Opposite sides equal and parallel	A1	and MC parallel to OA Do not accept OA parallel or BC

16	$\frac{1}{3} \pi \mathrm{r}^{2} 28=2400$	M1	
	$\mathrm{r}=\sqrt{(2400 \times 3) \div(\pi \times 28)}(=\sqrt{81.85})$	M1	
	$[9.04,9.05]$	A1	Accept 9 or 9.1 with working

17	$4(x-2)+3 x$	M1	
	$4(x-2)+3 x=x(x-2)$	M1 dep	Dep on 1st M1
	$x^{2}-9 x+8=0$	A1	
	$(x-1)(x-8)$	M1 dep	Dep on 1st M1 ft 3-term quadratic
	1 and 8	A1	

