

General Certificate of Secondary Education

Mathematics 4302 Specification B

Module 3 Tier H 43003H

Mark Scheme

2007 examination - November series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The following abbreviations are used on the mark scheme:

M Method marks awarded for a correct method.
A Accuracy marks awarded when following on from a correct method. It is not necessary always to see the method. This can be implied.

B Marks awarded independent of method.
M dep A method mark which is dependent on a previous method mark being awarded.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special Case. Marks awarded for a common misinterpretation which has some mathematical worth.
oe Or equivalent.
eeoo Each error or omission.

MODULE 3 HIGHER TIER
43003H

$1(\mathrm{a})$	$1.126582 \ldots$ or $\frac{89}{79}$	B1	or better
$1(\mathrm{~b})$	1.127	B1 ft	ft if (a) given to at least 4 dp

2	60×1.65 or $100 \div 1.65$	M1	
99 or $\quad 60.60 \ldots$	A1	Allow $60.6,60.60,60.61,60.606$ or better	
$100-$ their 99 or their $60.60 \ldots-60$	M1 dep	May be implied	
England by $€ 1$ or by $60 \mathrm{p} / 61 \mathrm{p}$	A1 ft	Must have correct unit ft to nearest cent or penny rounded or truncated	

3	$0.39 \times 800(=312)$	M1	oe or sight of 0.61 or 61%
	$800-($ their 312$)$	M1 dep	oe 800×0.61
	488	A1	

4(a)	Actual increase is $1900-600$	M1	$1.9-0.6$
	their $\frac{1300}{600} \times 100$	M1 dep	their $\frac{1.3}{0.6} \times 100 \quad$ their 316.(6)-100
	$216 .(6 \ldots)$	A1	Accept 217, 220
	200	B1 ft	ft any number $\geq 2 \mathrm{sf}$
$4(\mathrm{~b})$	1.12×600	M1	672
	0.9×1300	M1	1170
	their $672+$ their 1170	M1 dep	Dependent on both M1s
	1842	A1	SC3 2382

$\left.\begin{array}{|c|l|l|l|}\hline 5 & \begin{array}{l}\text { Any of } 1,2,3,4,6,9,12,18, \\ 36 \text { and } 36\end{array} & & \text { B2 } \begin{array}{l}\text { or 4 and } 18 \\ \text { or 12 and } 18 \\ \text { or 4 and 9 } \\ \text { or 9 and } 12\end{array}\end{array} \begin{array}{l}\text { A pair of factors of 36 which have a } \\ \text { different LCM B1 } \\ \text { eg 4 and 12, 6 and 6 }\end{array}\right\}$

6	Largest $=82000$	B1	oe
	Smallest $=3 \times 10^{-2}$	B1	0.03 oe

7	Even \times odd $=$ even or odd \times even $=$ even	B1	
Even \times odd $=$ even and odd \times even $=$ even	B1	SC1 at least two correct examples shown with clear evidence of \times	

8	After 1 day $=64 \%$ left After 2 days $=0.64 \times 0.64$ $(=0.4096)$ left	M1	Accept use of amount eg 0.64 $\times 1000(=640)$ their $640 \times 0.64(=409.6)$ for M1
	$\times 0.643$ more times $=0.107 \ldots$	A1	$0.64^{5}=0.107 \ldots \quad$ M1A1
	No with either $10.7 \ldots \%$ or $89.2 \ldots \%$ seen	A1	

9	\times by $\frac{\sqrt{6}}{\sqrt{6}}$	B1	Sight of $\frac{18 \sqrt{6}}{\sqrt{6} \sqrt{6}}$ oe
	Sight of denominator of 6	B1	Remember answer was given, must convince SC1 $3 \sqrt{6} \times \sqrt{6}=18$ Allow $\frac{18 \sqrt{6}}{6}$ for B2

10	Sight of 8.5 or 9.5 or 7500 or 8500	B1	or 0.905 or 90.5 Accept $9.4 \dot{9}$ for 9.5 and $8499(.99)$ for 8500
Chooses their max price and their max reduction	M1	Max price >8000 Max reduction >9 or >0.09 or <0.91 or <91 Sensible value	
$\frac{8500}{0.905}$ or $\frac{8500}{90.5} \times 100$	M1	oe	
$£ 9392.27$ or $£ 9392(.00)$	A1	Sight of $9392.265(1 \ldots) \quad$ SC3	

$11(\mathrm{a})$	Attempts to multiply numerators and denominators	M1	
$\frac{6}{55}$	A1	oe	
$11(\mathrm{~b})$	Shows intention to times by $\frac{1}{4}$	M1	oe $0.375 \div 4 \quad 3 \div 32$
	$\frac{3}{32}$	A1	0.09375

12(a)	$\frac{6}{10}$	B2	oe fraction $\frac{4}{10}$ B1
	3×50 or 6×50	M1	Also allow 4×50 for M1 if $\frac{4}{10}$ above
	Men $=150$	A1	
	Children $=300$	A1	
$12(b)$	$3: 1$	B1	oe eg $150: 50$ or $\frac{3}{10}: \frac{1}{10}$

$13(\mathrm{a})$	$1 \frac{2}{3} \times 2$	M1	$3 \frac{1}{3}$ or $\frac{10}{3}$ or $2 \frac{4}{3}$ oe Allow decimals ≥ 2 dp rounded or truncated $2+2=4$ or $2 \times 2=4 \quad$ M0A0
	4	A1	
	$1 \frac{2}{3}+1 \frac{1}{4}$	M1	
	$(1) \frac{8}{12}(+)(1) \frac{3}{12}$	M1	oe Valid denominator, at least one correct numerator $(1) .66(+)(1) .25$
	$2 \frac{11}{12}$ and some indication of yes	A1	2.91 or 2.92 and Yes oe

14	$16(\times) 9$	M1	Must have both
	144	A1	

15	All three correct Statement 1 matches Table B Statement 2 matches Table C Statement 3 matches Table A	B2	B1 for one (or two) correct

$16(\mathrm{a})$	Plots 4 coordinates correctly and draws a reasonable curve through the points	B 1	Be generous as poor curves will almost certainly lose marks later
$16(\mathrm{~b})$	their first solution $\pm \frac{1}{2}$ small square	B 1 ft	
	their second solution $\pm \frac{1}{2}$ small square	B 1 ft	
$16(\mathrm{c})$	x coordinate $1.5 \rightarrow 1.7$ y coordinate $-4 \rightarrow-3.5$	B 1	No ft Inclusive

17	Correct method for recurring decimal	M1	eg let $x=0 . \dot{2}$ then $10 x=2 . \dot{2}$ and subtract so $9 x=2$ etc
$\frac{2}{9} \times \frac{9}{20}$ attempted M1 depoe $\frac{2}{9} \times \frac{45}{100}$ attempted or $0.45 \div 9 \times 2$ attempted or 0.1			
$\frac{1}{10}$	A1	oe fraction	

18(a)	$\frac{1}{\sqrt{5^{2}}}$ or $\left(\frac{1}{\sqrt{5}}\right)^{2}$ or $\frac{1^{2}}{\sqrt{5^{2}}}$ or 5^{-1}	M1	
	$\frac{1}{5}$	A1	oe
$18(\mathrm{~b})$	$\sqrt{5} \sqrt{45}=\sqrt{5 \times 45}$	M1	or $\frac{\sqrt{5} \times \sqrt{45}}{5}=\frac{\sqrt{45}}{\sqrt{5}}$ or $\sqrt{45}=\sqrt{9} \sqrt{5}$
	$\sqrt{225}=15 \div 5(=3)$	M1	$\sqrt{9}(=3)$ or $\frac{\sqrt{5} \sqrt{9} \sqrt{5}}{5}=\sqrt{9}(=3)$
	$\sqrt{3}$	A1	Allow $3^{\frac{1}{2}}$

