

General Certificate of Secondary Education November 2010

Mathematics
4306
Specification A
Paper 1 Higher

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

[^0]Set and published by the Assessment and Qualifications Alliance.

GCSE Mathematics Linear 4306/1H Mark Scheme Nov 2010
Glossary for Mark Schemes
GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
Mdep A method mark dependent on a previous method mark being awarded.
B dep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.
SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe
Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$

Q	Answers	Mark	Comment
5	8×4.50 or 36	M1	$4.50 \div 3$ or 1.50
	their $36 \div 3$ or 12	M1	1.50×8 or 12
	$104.95 \div$ their 12 or $8.74 \ldots$ or their 12×9	M1	oe attempt at $104.95 \div$ their 12 (division seen) or their $12 \times n \geq 104.95(12 \times 9=108$ is enough)
	9 (weeks)	A1	
	Note $104.95 \times 3 \div 4.50 \div 8=8.74 \ldots$ so two of these steps earns M1 M1 M0 A0 eg. accept eg. 105 used for 104.95 in these calculations		

$\mathbf{6}$ (a)	14	B1	

$\mathbf{6}$ (b)	12	B1	

$\mathbf{6}(\mathbf{c})(\mathbf{i})$	straight line drawn from $(1036,50)$ to $(1110,50)$ and	B1	allow curve		
straight line drawn from $(1110,50)$					
to $(1150,0)$				\quad	line need not be ruled
:---					

6 (c) (ii)	$50 \div 40(\times 60)$	M1	oe eg. $50 \div 2 \times 3$ or 25×3
	75	A 1	SC 1 for $1.25(\mathrm{~km} / \mathrm{min})$

7 (a) (i)	correct front elevation

B1

7 (a) (ii)	correct side elevation	B1	Must be elevation from RHS

7	$(5+5+3) \times 2$	M1	Look for evidence of adding six values, including two 5 (b)
	26	A1	Must one 3, for this mark from adding the six correct values
	cm^{2}	B1	

$\mathbf{8}$ (a)	$10 w-10(=15)$ or $w-1=1.5$	B 1	
	$10 w=15+10$ or $w=1.5+1$	M 1	ft from their 3 term equation \ldots but not from $w-1=5$
	2.5	A 1 ft	SC 1 for 1.4 and 0.5

8 (b)	$(5 t+12=) 3 t+15$	B1		
	$5 t-3 t=15-12$ or $2 t=3$	M1	allow 1 sign error	ft from their 4 term equation
	1.5	A1ft	oe eg. $\frac{3}{2}$ A1ft only if no sign error in rearranging	
	$\begin{gathered} \text { eg. } 5 t+12=3 t+5 \rightarrow 2 t=-7 \rightarrow t=-3.5 \text { scores B0 M1 A1ft } \\ 5 t+12=3 t+5 \rightarrow 8 t=-7 \rightarrow t=-\frac{7}{8} \text { scores B0 M1 A0 } \end{gathered}$			

GCSE Mathematics Linear 4306/1H Mark Scheme Nov 2010

Q	Answers	Mark	Comment	
$\mathbf{9}$	$\frac{1}{2} \times 3.14 \times 40$ or 3.14×20	M1	Allow $(2 \times) 3.14 \times 40$ and $\frac{1}{2} \times 3.14 \times 20$	oe
	62.8	A1		
	their $62.8 \div 4$	M1dep	dep on ${ }^{\text {st }}$ M1	
	15.7	A1ft	ft if both M's scored	

$\mathbf{1 0}$	$30000 \times 5(\div 100)$ or $30000 \div 20$ or 300×5 or 1500	M1	
	Allow place value error or their 1500×1.20 or 1800	M1	failure to divide by 100
	M1		
	M1dep	oe Complete correct method	
7250	A1		

$\begin{gathered} 10 \text { Alt } \\ 1 \end{gathered}$	$\begin{array}{\|l} 30000 \times 3 \text { or } \\ 90000 \text { or } \\ 450 \times 3 \text { or } \\ 1350 \\ \hline \text { their } 90000 \times 5(\div 100) \text { or } \\ \text { their } 90000 \div 20 \text { or } \\ \text { their } 900 \times 5 \text { or } \\ 4500 \\ \hline \text { their } 4500 \times 1.20 \text { or } 5400 \\ \hline \end{array}$	M1 M1 M1 M1	Allow place value error or failure to divide by 100
	their $5400+$ their $1350+500$	M1dep	oe Complete correct method
	7250	A1	

$\mathbf{1 1}$ (a)	50×0.4	M1	
	20	A1	

$\mathbf{1 1}$ (b)	0.3×40	M1	oe eg. $200 \div 5(=40)$ and $60 \div 5(=12)$
	12	A1	

$(\mathbf{2}(\mathbf{a)}$	$w y=x-w t$ or $y+t=\frac{x}{w}$	M 1	
	$x=w y+w t$ or $x=w(y+t)$	A 1	

$\mathbf{1 6}(\mathbf{a})$ (i)	2	B1	$\frac{1}{2}$ Allow 1:2, $2: 1 \times 2$, doubled, halved Condone 2 cm
$\mathbf{1 6}$ (a) (ii)	4	B1	$\frac{1}{4}$ Allow $1: 4,4: 1, \times 4$

16 (b)	(SF $=) 9$ or $\frac{1}{9}$	M1	$\left(\frac{7.5}{2.5}\right)^{2}$ or $\left(\frac{2.5}{7.5}\right)^{2}$ or $54 \div 7.5 \div 3 \times 2.5$ oe
	6	A1	

Q	Answers	Mark	Comment

17 (a)	$\begin{aligned} & 3 \div 11 \text { attempted } \ldots \\ & \text { long or short division } \end{aligned}$	M1	Attempt to at least $2 \mathrm{dec} \mathrm{pl} \ldots$ accept error in $2^{\text {nd }} \mathrm{dp}$
	0.2727...	A1	Minimum of 4 dp shown
	alternatively		
	$\begin{aligned} & x=0.2727 \ldots \\ & 100 x=27.2727 \ldots \\ & 99 x=27 \\ & x=\frac{27}{99} \end{aligned}$	M1	sight of $\frac{27}{99}$ is enough
	$\frac{27}{99}=\frac{3}{11}$	A1	$\frac{27}{99}$ cancelled by a factor of 3 , clearly shown

17 (b)	$0.6+0.02727 \ldots$	M1	$\begin{aligned} & x=0.62727 \ldots \text { and } 100 x=62.72727 \ldots \\ & 10 x=6.2727 \ldots \text { or and } 1000 x=627.2727 \ldots \end{aligned}$ Must have decimal parts corresponding
	$\frac{6}{10}+\frac{3}{110}$	M1	$990 x=621$ or $99 x=62.1 \quad$ (dep on $\left.1^{\text {st }} \mathrm{M} 1\right)$
	$\frac{66}{110}+\frac{3}{110}$	M1	$\frac{621}{990}$
	$\frac{69}{110}$	A1	Cancelling of $\frac{621}{990}$ to be clearly shown

$\mathbf{1 8}$	16		B1 for
$\frac{1}{\left(\frac{1}{2}\right)^{4}, \frac{1}{\left(\frac{1}{16}\right)},\left(\frac{1}{16}\right)^{-1},\left[\left(\frac{1}{2}\right)^{4}\right]^{-1},\left(2^{-1}\right)^{-4}, 2^{4} \text { or }}$			
$\left(\frac{1}{2}\right)^{-4}$ is the reciprocal of $\left(\frac{1}{2}\right)^{4}$			
		BC1 for $\left(\frac{1}{2}\right)^{4} \rightarrow \frac{1}{16} \rightarrow-\frac{1}{16}(-0.0625)$	

| $\mathbf{1 9}$ | $C P=C R$ and
 sides of square $C P Q R$ | B1 |
| :---: | :--- | :---: | :--- |
| | B1 | |
| | B1 | |
| | B1 | |

Q	Answers	Mark	Comment
20 (a)	$a=3$	B1	Allow multiples of these if consistent
	$b=-5$	B1	
	$c=4$	B1	

| $\mathbf{2 0}$ (b) |
| :---: | :--- | :--- | :--- |
| (i) | | Cannot calculate the square root of a |
| :--- |
| negative number |\quad B1 | oe |
| :--- |

$\mathbf{2 0}$ (b) (ii)	Graph R	B 1	

21 (a)	$\begin{array}{ll} \sqrt{2} \sqrt{ } 2+\sqrt{ } 2 \sqrt{ } 10+\sqrt{ } 10 \sqrt{ } 2+\sqrt{ } 10 \sqrt{ } 10 \\ \text { or } & 2+\sqrt{ } 2 \sqrt{ } 10+\sqrt{ } 10 \sqrt{ } 2+10 \\ \text { or } & 2+\sqrt{ } 20+\sqrt{ } 20+10 \\ \text { or } & \sqrt{ } 4+\sqrt{ } 20+\sqrt{ } 20+\sqrt{ } 100 \end{array}$	B1	oe
	$\begin{aligned} & (\sqrt{ } 2 \sqrt{ } 10=) \sqrt{ } 20=\sqrt{ } 4 \sqrt{ } 5 \text { or } \sqrt{ }(4 \times 5) \\ & =2 \sqrt{ } 5 \end{aligned}$	B1	Clearly shown since answer given

$\mathbf{2 1}$ (b)	$2^{2}+(2+\sqrt{ } 5)^{2}$	B1	Must show intent to square and add	oe
	$(4+) 4+2 \sqrt{ } 5+2 \sqrt{ } 5+\sqrt{ } 5 \sqrt{ } 5$	B1	or better	
	$13+4 \sqrt{ } 5$ and No	B1		

$\mathbf{2 2}$ (a)	$(x-3)^{2}=x^{2}-3 x-3 x+9$	B1	Must see correct four term expansion

$\mathbf{2 2}$ (b)	correct sketch graph	B1	quadratic to right of origin touching x-axis

$\left.\begin{array}{|c|l|l|l|}\hline \mathbf{2 2} \text { (b) } \\ \text { (ii) }\end{array}\right)\binom{3}{0} \quad$ B1 $\quad \square$.

Q	Answers	Mark	Comment
23	Green from A to B and Red from B to A	M1	Statement showing appreciation of the necessary steps needed for A to have only Red counters or sight of arrows indicating Green from A and Red from B or sight of $\frac{1}{6} \times \frac{?}{7}$
	$\frac{1}{6} \times p=\frac{2}{21}$	M1	oe eg. $\frac{1}{6} \times \frac{x}{7}=\frac{2}{21}$ or $\frac{1}{6} \times \frac{(7-y)}{7}=\frac{2}{21}$ where $x=\operatorname{Red}$ in B and $y=$ Green in B, when $2^{\text {nd }}$ counter is chosen
	$p=\frac{4}{7}$ ie. prob Red from B on $2^{\text {nd }}$ step $=4 / 7$ or number of Red in $B=4$	A1	$p=\frac{12}{21}$ earns this mark $x=4 \text { or } 7-y=4(\rightarrow y=3)$ ie. number of green in $B=3$
	2 (Green in B at the start)	A1	Conclusion clearly stated

23Alt	alternative solution (T\& I)		
	trying wrong value for G eg. $G=3$ (ie. $3 R$ and $3 G$ at the start) $\frac{1}{6} \times \frac{3}{7}=\frac{3}{42} \neq \frac{2}{21}$	M2	$\frac{1}{6} \times \frac{3}{7}$ is the first M1 (correct transfer of colours) multiplication of probabilities and checking the answer is the second M1 must use 7 as a denominator, otherwise M0 M0
	other examples $\begin{aligned} & \mathrm{G}=1 \text { gives } \frac{1}{6} \times \frac{5}{7}=\frac{5}{42} \neq \frac{2}{21} \\ & \mathrm{G}=4 \text { gives } \frac{1}{6} \times \frac{2}{7}=\frac{2}{42} \neq \frac{2}{21} \\ & \mathrm{G}=5 \text { gives } \frac{1}{6} \times \frac{1}{7}=\frac{1}{42} \neq \frac{2}{21} \end{aligned}$		all score M2 (if complete) max M2 unless the correct value for G is used (see below)
	trying correct value for G $\mathrm{G}=2$ (ie. 4 R and 2 G at the start) $\frac{1}{6} \times \frac{4}{7}=\frac{4}{42}=\frac{2}{21}$	M1 M1 A1	$\frac{1}{6} \times \frac{4}{7}$ is the first M1 (correct transfer of colours) multiplication of probabilities and checking the answer is the second M1 answer of $\frac{2}{21}$ is A1
	2 (Green in B at the start)	A1	Conclusion clearly stated

[^0]: COPYRIGHT
 AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

