

General Certificate Secondary of Education June 2010

Mathematics
4306/1H

Paper 1 Higher Tier

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
Mdep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$

\mathbf{Q}	Answer	Mark	Comments

1	$4(\times)(-9+3)$ or $(4 \times)-6$ or $-36+12$ or -24	M1	Do not need to see substitution of $B=12$
	$-24 / 12$ or $-4 / 2$ or $-6 / 3$	A1	
-2	A1ft	ft If M1 awarded or ft From $4 \times-9=-45$ or -27 only Answers are:	
$-2.75,-2 \frac{3}{4}$ or $-\frac{11}{4}$ from $4 \times-9=-45$			
and $-1.25,-1 \frac{1}{4}$ or $-\frac{5}{4}$ from $4 \times-9=-27$			
SC1 2 with no working or 4 as answer			

2(a)	$1-(0.6+0.1+0.1)$	M1	oe
	0.2	A1	oe
2(b)	$0.6 \times 100(=60)$ or $0.6=\frac{60}{100}$ or $0.1=10$ (discs) or $0.6=60$ (discs) or $10(\mathrm{~B})+10(\mathrm{Y})+20(\mathrm{G})+60(\mathrm{R})(=100)$ or 0.6 in or out of $100=60$	M1	oe eg $\frac{6}{10}$ of $100(=60)$ or $0.6=60 \%$ These represent the minimum acceptable for M1
	Yes, with working shown	A1	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

3	Area of rectangle $6 \times 12($ or 72)	M1	or Area of enclosed rectangle $12 \times(6+3)$ (or 108)
	Area trapezium $\frac{1}{2} \times(12+8) \times 3$ or $8 \times 3+2 \times 0.5 \times 2 \times 3$ or $12 \times 3-2 \times 0.5 \times 2 \times 3$ or 30	M1	Area of two extra Δ^{\prime} 's $2 \times 0.5 \times 2 \times 3$ (or 6)
	Total area $=102$		
	B1		
cm^{2}			

4(a)	$+5$ and $\times 2$ or $\times 2$ and $+10$	B2	oe Must be in the correct order $\begin{array}{ll} \text { B1 } & +5 \text { or } \times 2 \quad \text { (in correct box) } \\ \text { or } & n+5 \text { and } 2(n+5) \\ & 2 n \quad \text { and } 2 n+10 \\ & 2 n \\ & \text { and }+10 \\ & +n \text { and }+10 \end{array}$
4(b)	8	B1	

5(a)	63.02	B1	
5(b)	13.7	B1	
5(c)	10	B1	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

6(a)	4	B1	Allow embedded answer with no contradiction
6(b)	$7 x-3 x=8+2$ or $-2-8=3 x-7 x$	M1	Allow one sign error $\begin{aligned} & 7 x+3 x=8+2 \rightarrow 10 x=10 \\ & 7 x-3 x=8-2 \rightarrow 4 x=6 \\ & -2-8=3 x+7 x \rightarrow-10=10 x \\ & -2+8=3 x-7 x \rightarrow 6=-4 x \end{aligned}$
	$4 x=10$	A1	
	$2 \frac{1}{2} \text { or } 2.5 \text { or } \frac{10}{4}$	A1ft	$\mathrm{ft} \quad x=1 \quad$ from $\quad 10 x=10$ or $x=1.5$ from $\quad 4 x=6$ or $x=-1$ from $-10=10 x$ or $x=-1.5$ from $\quad 6=-4 x$ or from M1 awarded
6(c)	$3 y+11=8$	M1	$0.75 y+2.75=2 \quad$ oe
	$3 y=8-11$ or $3 y=-3$	M1 Dep	$0.75 y=2-2.75$ or $0.75 y=-0.75$ oe
	-1	A1	

7 7(a)	$180-105=x+2 x$	M1	oe eg, $75 \div 3$
	25	A1	
7 7(b)	50°	B1ft	ft (their) 25
	Alternate	B1 Dep	oe

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

8(a)	$\frac{5}{6} \times \frac{4}{3}$ or $\frac{10}{12} \div \frac{9}{12}$	M1	$\text { oe eg, } \frac{20}{24} \div \frac{18}{24}$	
	$\frac{20}{18}$ or $\frac{10}{12} \times \frac{12}{9}$	M1	Also award for correct cancelling of factor of 2	
	$\frac{10}{9}$ or $1 \frac{1}{9}$ or $1.11(\ldots)$	A1	A0 $10 \div 9$	
8(b)	3 and Attempt at common denominator	M1	$\frac{22}{5}-\frac{4}{3}$	Allow one error in numerator in first step
	$\frac{6-5}{15}$ oe	M1	(their) $\frac{66}{15}$ - (their) $\frac{20}{15}$ ft Their numerators	ft Their attempt at common denominator
	$3 \frac{1}{15}$	A1	Accept $\frac{46}{15}$	
Alt 8(b)	4.4 or 1.33...	M1		
	4.4-1.33(3...)	M1		
	3.066 ... or 3.067	A1		

9	How many hours of homework did you do (last week)?	B1	Must refer to hours and imply week (not a question asking for how many hours each day)
	Boxes must be mutually exclusive exhaustive include '0 hours' have an open ended upper limit	At least three boxes with no overlap and no gaps	

\mathbf{Q}	Answer	Mark	Comments

10(a)	$360 \div 8(=45)$ or $360 \div 45=8$ or $8 \times 45=360$	B1	Interior angles $(=6 \times 180)=1080$ Interior angle $=1080 \div 8=135$ \rightarrow Exterior angle $=45$
$\mathbf{1 0 (b)}$	(Exterior angle $=) 180-168$ or 12	M1	$168 n=180(n-2) \quad(\mathrm{oe})$
	$360 \div$ (their) $(180-168)$	M1	$360=180 n-168 n$ or $360=12 n$
	30	A1	

11	$140-112$ or 28	M1	$112 / 140 \times 100$ or 80
	(their) $28 / 140 \times 100$	M1	$100-$ (their) 80
	20	A1	

12(a)	7	B1	
	-2	B1	
12(b)	Correct curve from $x=-1$ to $x=5$ $\pm 1 \mathrm{~mm}$ from integer points	B2	B1 5 points plotted correctly from (their) $(-1,7),(0,2),(1,-1)$, (their) $(2,-2),(3,-1),(4,2)$ and (5, 7) $\pm 1 \mathrm{~mm}$ from integer points
12(c)	0.5 to 0.7 and 3.3 to 3.5	B1ft	Both values needed ... ft from their graph

13(a)	6.9×10^{-3}	B1	or 0.0069	B1 For digits 69 seen
$\mathbf{1 3 (b)}$	3.2×10^{6}	B1	or 3200000	B1 For digits 32 seen
13(c)	0.18	B1	Accept	.18
13(d)	$4.5 \times 10^{5} \times 10^{-2}$ or 450000×0.01 or 450000×10^{-2} or $450000 \times 1 / 100$ or 4500	M1		
	4.5×10^{3}	A1		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

14(a)	180-37-28	M1	oe
	115	A1	
14(b)	(Scale Factor $=$) $\frac{20}{8}$ or 2.5 or $\frac{8}{20}$ or 0.4	M1	$\frac{D F}{15}=\frac{20}{8} \quad(\mathrm{oe})$
	$15 \times$ (their) 2.5 (oe) or $15 \div$ (their) 0.4 (oe)	M1dep	$D F=20 \times 15 \div 8 \quad$ (oe)
	37.5	A1	

15(a)	$\frac{38000+29000+25000+34000}{4}$ or $\frac{126000}{4}$	M1	Allow $(38+29+25+34) \div 4$ or $126 \div 4$
	31500	A1	
$\mathbf{1 5 (b)}$	$28000=\frac{29000+25000+34000+?}{4}$	M1	or 28000×4 (or 112000)
	24000	A1	SC1 For 32000 (using the last four values)

$\mathbf{1 6 (a)}$	$x^{2}+5 x-2 x-10$	B1	
	$3 x+3$	B1	
$\mathbf{1 6 (b)}$	$(x-1)(x+7)$	B2	B1 For $(x+1)(x-7)$
$\mathbf{1 6 (c)}$	(their) 1	B1ft	$(x+3)^{2}-16=0$ or better
	(their) -7	B1	B1 For (their) solutions from (their) incorrect factorisation after restart

Q	Answer	Mark	Comments

17(a)	$2 x(3 x-5 y)$	B2	B1 $2\left(3 x^{2}-5 x y\right)$ or $x(6 x-10 y)$ or $2 x(? \pm ?)$
17(b)	$125 a^{12} b^{3}$	B2	B1 2 out of 3 parts correct eg, $5 a^{12} b^{3}$

18

$\left(81^{0.5}=\right)(\pm) 9$	B1	
$\left(6^{-2}=\right) \frac{1}{6}^{2}$ or $\frac{1}{36}$	B1	B2 $(\pm) \frac{9}{36}$
$(\pm) \frac{1}{4}$	B1	or $(\pm) 0.25$ or $(\pm) 4^{-1}$

19	$c=14$	B1	
	$0=2^{2}+2 b+14$ or $0=7^{2}+7 b+14$	M1	This mark is for using one of these equations to find b $c=14$ might appear in a T\& I attempt
	$b=-9$	A1	$x^{2}-9 x+14$ scores M1A1B1
$\begin{gathered} 19 \\ \text { Alt } 1 \end{gathered}$	(Factors) $(x-2)(x-7)$	M1	
	$b=-9$	A1	
	$c=14$	B1	$x^{2}-9 x+14$ scores M1A1B1
$\begin{gathered} 19 \\ \text { Alt } 2 \end{gathered}$	$0=2^{2}+2 b+c$ and $0=7^{2}+7 b+c$ and Attempt to eliminate an unknown	M1	$\text { eg, } \begin{aligned} & 0=4+2 b+c \\ & 0=49+7 b+c \\ & \rightarrow 0=45+5 b \end{aligned}$
	$b=-9$	A1	
	$c=14$	B1	$x^{2}-9 x+14$ scores M1A1B1

Q	Answer	Mark	Comments
20	$\begin{aligned} & \text { Attempt at } \sum f x \\ & 90 \times 1.2+130 \times 2+80 \times 3.5+60 \times \\ & 5 \\ & \text { or } \\ & 108+260+280+300 \\ & \text { or } \\ & 948 \end{aligned}$	M1	$\begin{aligned} & 90 \times 1.20 \times 5(\text { or } 540) \\ & \text { and } \\ & 130 \times 2.00 \times 5(\text { or } 1300) \\ & \text { and } \\ & 80 \times 3.50 \times 5(\text { or } 1140) \\ & \text { and } \\ & 60 \times 5.00 \times 5(\text { or } 1500) \end{aligned}$
	(their) 948×5	M1 Dep	(their) $(540+1300+1140+1500)$
	4740	A1	

21	(Cylinder volume $=$) $\pi r^{2} \times 2 r$	B1	$2 \pi r^{3}$	
	$\begin{aligned} & \text { (Space }=\text {) } \\ & \pi r^{2} \times \text { (their) } 2 r-\frac{4}{3} \pi r^{3} \end{aligned}$	M1	(Ball as fraction of cylinder $=$) $\frac{\frac{4}{3} \pi r^{3}}{\left(\pi r^{2} \times(\text { their }) 2 r\right)}$	Accept only r or h for (their) $2 r$
	(their) space/($\pi r^{2} \times$ (their) $2 r$)	M1 Dep	1 - (their) ball/cylinder	Dep on ${ }^{\text {st }} \mathrm{M} 1$
	$\frac{1}{3}$	A1	A0 $\frac{1}{3}$ using numerical values of r and/or π	
Note Using numerical values for r and/or π : can score B1M1M1depA0				

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

22	Correct $1^{\text {st }}$ step using surds	M1	For example $\sqrt{w} \sqrt{8}=\sqrt{(8 w)}$ or $\sqrt{8}=2 \sqrt{2}$ or RHS $=2 \sqrt{3} \sqrt{3}=6$ (must get 6) or LHS $=\sqrt{ }\left(\frac{8 w}{3}\right)$ or RHS $=\sqrt{12}$ or Squaring both sides to get $\frac{8 w}{3}=2 \sqrt{3} \times 2 \sqrt{3}$ (or 12) or Attempt to rationalise LHS eg, $\sqrt{ } w \sqrt{24 / 3}$ or $\sqrt{(24 w) / 3}$
	Obtaining an equation where the solution is just 'one step' away	M1	For example $8 w=36$ or $\sqrt{ }(8 w)=\sqrt{ } 36$ or $\sqrt{ }(8 w)=6$ or $\sqrt{ } 8 \sqrt{ } w=6$ or $\sqrt{ } w=6 / \sqrt{ } 8$ or $\sqrt{ } w=(2 \sqrt{ } 9 / \sqrt{ } 8)$ or $w=(2 \sqrt{ } 9 / \sqrt{ } 8)^{2}$ or $2 w=9$ or $\sqrt{ }(2 w)=\sqrt{ } 9 \text { or } \sqrt{ }(2 w)=3$
	$4 \frac{1}{2}$ or 4.5 or $\frac{9}{2}$ or $\frac{36}{8}$	A1	

23	$(x-2)^{2}-4-15=0$ or $(x-2)^{2}=19$	M1	Allow $(x-2)^{2}=k \quad(k>0)$
	$x-2=(\pm) \sqrt{ } 19$ or $(x=) 2(\pm) \sqrt{ } 19$	A1ft	Allow positive root only ft from (their) k
	$(x=) 2 \pm \sqrt{ } 19$	A1	
Alt 23	$\frac{4 \pm \sqrt{\left\{(-4)^{2}-4 \times 1 \times(-15)\right\}}}{2}$	M1	Condone one error (substitution or using + instead of \pm) Not $4 \pm \frac{\sqrt{\left\{(-4)^{2}-4 \times 1 \times(-15)\right\}}}{2}$... this is MO
	$\frac{4 \pm \sqrt{76}}{2}$	A1ft	Allow positive root only A0 for negative square root
	$(x=) 2 \pm \sqrt{19}$	A1	

Q	Answer	Mark	Comments
24	$\angle A C D=40$	B1	Angle in same segment (oe)
	$\angle D A E=40$	B1	Angle in alternate segment
	$(x)=180-(40+32+40)$	M1	Angle sum $\triangle A E C$
	$(x=) 68$	A1	
	At least two reasons including alternate segment	E1	Dep on M1
Alt 124	$\angle A C D=40$	B1	Angle in same segment (oe)
	$\angle D A E=40$	B1	Angle in alternate segment
	(Method leading to) $\angle A D E=72$	M1	ft (their) $\angle A C D$ (40) and 32 $\angle C D A=108(\mathrm{ft})$ angle sum $\triangle A C D$ and \angle on straight line or exterior angle property $\triangle A C D$
	$(x=) 68$	A1	Angle sum $\triangle A D E$
	At least two reasons including alternate segment	E1	Dep on M1
Alt 224	$\angle D B C=32$	B1	Angle in same segment (oe)
	$\angle D A E=40$	B1	Angle in alternate segment
	(Method leading to) $\angle A D E=72$	M1	ft (their) $\angle D B C$ (32) and 40 $D A=108(\mathrm{ft})$ opposite angles of cyclic quadrilateral are supplementary (oe) and \angle on straight line or exterior angle of cyclic quadrilateral
	$(x=) 68$	A1	
	At least two reasons including alternate segment	E1	Dep on M1
Note $\angle A C D=40$ and $\angle D B C=32$ does not score 2 marks. These two angles are not part of the same solution			

Q	Answer	Mark	Comments

Alt 3 24	$\angle D A E=40$	B 1	Angle in alternate segment
	$\angle C A ?=108$	B 1	Angle on straight line
	(Method leading to) $\angle A D E=72$	M 1	$\angle C D A=108$ angle in alternate segment and \angle on straight line
	$(x=) 68$	A 1	Angle sum $\triangle A D E$
	At least two reasons including alternate segment	E 1	Dep on M1
	$\angle D A E=40$	B 1	Angle in alternate segment
	$\angle C A ?=108$	B 1	Angle on straight line
	$\angle C D A=108$	M 1	Angle in alternate segment
	A1	Exterior angle property $\triangle A D E$	
	At least two reasons including alternate segment	Dep on M1	

25(a)	$\frac{5}{8} \times p=\frac{1}{4}$	M 1	or $\frac{1}{4} \div \frac{5}{8}$
	$(p=) \frac{2}{5}$ or $\frac{8}{20}$	A 1	oe
25(b)	$\frac{3}{8} \times\left[1-\left(\right.\right.$ their $\left.\frac{2}{5}\right]$	M 1	$1-\left[\frac{1}{4}+\frac{5}{8} \times\right.$ (their) $\frac{3}{5}+\frac{3}{8} \times$ (their) $\left.\frac{2}{5}\right]$
	$\frac{9}{40}$	A 1	oe

