

General Certificate Secondary of Education June 2010

Mathematics
4306/2F

Paper 2 Foundation Tier

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
Mdep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$

Q	Answer	Mark	Comments
1(a)	2.85	B1	$285 p$
	2.24	B1	224 p
	5.09	B1ft	509p
1(b)	$20 \div 3.75$ or 5.33	M1	Allow a build up method eg, $3.75,7.50,11.25$ up to at least 18.75
	5	A1	

$\mathbf{2}$	$(0) .2(0)$	B1	
	13	B1	
	$\frac{5}{100} \quad 5$	B1	oe

3(a)(i)	Rome or 6	B1	
3(a)(ii)	New York or -10	B1	
3(b)	-9	B1	
	1	B1	
	-10	B1	

$\mathbf{5 (a)}$	7.50×3	M1	
	22.50	A 1	22.5 gets M1 A0
$\mathbf{5 (b)}$	$37.50 \div 7.50$	M1	Their 22.5(0) $+7.5(0)$ or 30 seen
	5	A1	

Q	Answer	Mark	Comments

6	Correct horizontal names under bars Ruler, Calculator and Pencil	B1	Allow R, C, P
	'Frequency' or 'number' or 'amount' on vertical axis	B1	oe
	Values 0, 5, 10 15, 20 written at the top of each row	B1	B0 For labelling numbers by middle of each row Ignore any values past 20 Usual error is to miss out 0

7(a)	$(2,4)$	B1	SC1 All 3 correct but on wrong lines
	$(-3,1)$	B1	
	$(-1,-1)$	B1	
7(b)	Isosceles	B1	Allow poor spelling
7(c)	$(-2,0)$	B1	

8(a)(i)	37	B1	
	Their 37-3	B1ft	Answers may not be on answer line
8(a)(ii)	Take away 3 or $52-3 n, 52-3$ xetc	B1	Subtract 3, minus 3, taking off $3,-3$ oe B0 For $\mathrm{N}-3, n-3, x=-3$ etc
8(b)	-6 (ignore any reference to $10^{\text {th }}$ term)	B1	Minus 6, negative 6 B0 For 6
8(c)	22 (ignore 43 if given as well)	B2	If gives 2 lists then B1 for 22 in one sequence but not the other If gives 2 lists and 22 in both but nothing on answer line then B2

9(a)(i)	Rhombus	B1	
9(a)(ii)	Sides same (2 pairs of) opposite sides Parallel (2 pairs of) opposite angles Equal	B1	A parallelogram with diagonals crossing at right angles 2 lines of symmetry Rotational symmetry order 2
9(b)	45 to 47 inclusive	B1	
9(c)	Square, rectangle	B1	Any order

Q	Answer	Mark	Comments

$\mathbf{1 0 (a)}$	180 cm	B1	
$\mathbf{1 0 (b)}$	3.25×52	M1	
	169	A1	Allow answer that rounds to 169 to 3sf 16.9 with no working is M0A0

11	Σx or 44	M1	At least 4 additions seen
	Their $\Sigma x \div 8$	M1 Dep	$44 \div 8$
	5.5	A1	Treat answer of 6 from 5.5 as fw

12(a)	57		B1	
			B1	
12(b)	Examples that score B1: Can only get 6.40 Can only get 6.60 $£ 6.50$ is not a multiple of $20 p$ No amount of 20 p can add up to 6.50 $6.50 \div 0.2=32.5$ 65 is odd and 2 is even 0.20 does not divide 6.50 20 does not go into 50 50 is not a multiple of 20 cannot make 50 using 20 need a $10 p$ list including 40, $60 \mathrm{eg}, 540,560$ she only has 7 coins she has not enough coins		B1	B0 For incorrect, contradictory or incomplete statements eg, 20 p coins only make even totals it will come out odd it's not in the 20 times table 6.50 is an odd number 50 is an odd number 6.50 is not a multiple of 2 20 does not go into 6.50 as it is an even number need 10 p and 6.50 is odd (correct + incorrect statement) need 30 p to make 50 p need a 50 p
12(c)	$6 \times 50 \mathrm{p}$	$4 \times 50 \mathrm{p}$	B2	B1 for 2 or 3 correct answers
	$2 \times 50 \mathrm{p}$	$10 \times 20 \mathrm{p}$		

Q	Answer		Mark
Comments			
	$12.5(0) \times 4$	or 50	M1
	$242-80-50$	or 112	A1
	Their $112 \div 4$	$60.5(0)$	
	28		M1 Dep
Their 60.5(0) $-20-12.5(0)$			

15(a)	21	B1	
15(b)	13	B1	
15(c)	63	B1	
15(d)	42	B1	

$\mathbf{1 6 (a) (i)}$	$9.05263 \ldots$	B1	9.052631579
$\mathbf{1 6 (a) (i i) ~}$	9.1	B1ft	ft Provided their answer to (a)(i) is given to more than 1dp
$\mathbf{1 6 (b)}$	$133 .(\ldots)$.	B1	
$\mathbf{1 6 (c)}$	0 or 1	B1	Either answer

17	$3 P=12$	M1	$P=4$ or 4 seen
	$2 P+2 Q=14$ can be shown using numbers eg, if they have working leading to P is 6 then	M1	M2 for $8+2 Q=14$
$2 \times 6+2 \times 1=14$ scores M1M1A0 or MOM1A0 depending on whether they have a valid method for P	A1		
	3		

18(a)	$2 \times 4 \times 5$	M1	Do not allow fw eg, 6×40 is M0
	40	A1	40^{3} is M1 A0 with no working $40 \times 40 \times 40=40^{3}$ is M0A0
$\mathbf{1 8 (b)}$	Length $^{3}=216$	M1	$\sqrt[3]{216}$
	6	A1	Allow embedded answer eg, $6 \times 6 \times 6=216$ unless contradicted on answer line when only award M1A0

Q	Answer	Mark	Comments

19	$26 \times 34 \div 100$	M1	Build up methods are OK provided they show how to get to a total of 34 or 134 Allow arithmetic errors for M1
	8.84	A1	A1 34.84
	$26+$ their 8.84	A1ft $30 \%=7.6($ not 7.8$), 1 \%=0.26$	
$7.6+4 \times 0.26=8.64$			
$26+8.64=34.64$ gets M1 A0A1			

$\mathbf{2 0}$	$47 \div 5$	M1	Sight of 9.4 and/or 37.6 is M1	
	Adam 37.60	Beth 9.40	A1	37.6 and/or 9.4 is M1A0 Reversed answers scores M1A0

21(a)	24	B1	
21(b)	$\frac{1}{5}$	B2	B1 Any equivalent fraction even if decimal values such as $\frac{2.5}{12.5}, \frac{10}{50}$
		or 20% or 0.2 B1 For 1 out of 5,1 in 5 B0 For 10 out of 50 B0 For $1: 5$ or $1: 4$	
$\mathbf{2 1 (c) ~}$	$\frac{1500}{50} \times 22,44 \%$ of 1500	M1	oe 840 seen is M1 as MR

22(a)	Top box	B1	
22(b)	Bottom box	B1	
22(c)	Top box	B1	

23	Distance 14.8 to 15.2	B1	
	Bearing 245 to 249	B2	Allow -111 to -115 B1 For 65 to 69 or 111 to 115

Q	Answer	Mark	Comments

25(a)	Either	B1	
25(b)	Testing any prime value for p, p must be squared	M1	Correct value of n for a prime value of p eg, 10, 2 15, 3 55, 7 gets M1A0
	Examples of correct values are $31,5 \quad 127,11 \quad 367,19 \quad 967,31$	A1	Values wrong way round implies M1A0
25(c)	$p^{2}=n-6$	M1	Correct reverse flow diagram $\begin{aligned} & p \rightarrow \text { square } \rightarrow+6 \rightarrow n \\ & p \leftarrow \sqrt{ } \leftarrow-6 \leftarrow n \end{aligned}$
	$p=\sqrt{ }(n-6)$ and $/$ or $p=-\sqrt{ }(n-6)$ or $\sqrt{ }(n-6)=p$	A1	Must have $p=$ Square root must be over all terms ie, $p=\sqrt{ } n-6$ with no working is MOAO Allow \pm in front of root

Q	Answer	Mark	Comments

26(a)	All equally likely circled	B1	
	Valid explanation such as dice has no memory so any values equally likely. It's a fair dice so not biased.	B1 Dep	
26(b)(i)	5	B1	
26(b)(ii)	0.42 plotted or 0.42 seen or $42 / 100$	B1	Allow either calculation or plot as this is a lead in to part (b)(iii) Accuracy of plot to $\frac{1}{2}$ square accuracy $42 \div 100 \text { gets } B 0$
26(b)(iii)	16 or 17	B1	
26(b)(iv)	No ticked and reason $0.42>0.16$ or $42>17$ Should be about a sixth and 0.4 is bigger than this In 100 throws there should be about 16 sixes and there are more than this	B1	oe need a comparison with a sixth If 'Yes' ticked then B0 If neither box is ticked but answer makes it clear that dice is biased give B1

