

General Certificate Secondary of Education June 2012

Applications of Mathematics (Pilot) 9370

Unit 2 Higher Tier 93702H

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
Q Marks awarded for quality of written communication. (QWC)
M Dep A method mark dependent on a previous method mark being awarded.

BDep A mark that can only be awarded if a previous independent mark has been awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe \quad Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$

A2 Higher Tier

Q	Answer	Mark	Comments
1	$150 \times 4(=600)$	M1	$150-\frac{480}{4}(=30)$
	Their 600-480	M1 Dep	Their 30×4
	120	A1	

2(a)	70	B1	May be on diagram
	$360-(80+65+$ their 70$)$	M1	360-215
	145	A1 ft	ft Their 70 SC2 Answer 160 SC2 Answer 152.5
2(b)	$420 \div 6$	M1	oe eg $6 x=420$ or 6 (edges) $\rightarrow 420$
	70	A1	
	(2 \times) their $70 \times$ their 70	M1	Must be (2 \times) $x \times x$
	9800	A1 ft	ft $2 \times$ their $70 \times$ their 70 SC3 Answer with digits 98 SC2 Answer with digits 49

3(a)	Bearing from $A 142^{\circ}\left(\pm 2^{\circ}\right)$	B 1	
	Bearing from $B 255^{\circ}\left(\pm 2^{\circ}\right)$	B 1	B 1 ft
	Intersection of their lines indicated as C	Any unambiguous indication ft From B1 B0 or B0 B1	
3(b)	Q and 8	B2 24 or 16 or 8 seen or 32 and 48 seen or Q with reason why it is faster eg Q as the line is steeper	
SC1 Q and $\frac{2}{15}$ (or 0.13)			

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

4(a)(i)	0.72	B1	
4(a)(ii)	2.8×1.9 - their 0.72	M1	$\begin{aligned} \text { oe eg } 280 \times 190-\text { their } 7200 \\ 5.32-\text { their } 0.72 \end{aligned}$
	4.6(0)	A1 ft	ft From their (a)(i) and consistent units Allow M1 A1 ft for 46000 if their (a)(i) is 7200 SC1 Answer with digits 46
4(b)	$\begin{aligned} & 2.4 \times 1.9+\frac{1}{2} \times 2.4 \times(2.2-1.9) \\ & (=4.92) \end{aligned}$ or $\begin{aligned} & 2 \times \frac{1}{2} \times 1.2 \times(1.9+2.2) \\ & (=4.92) \end{aligned}$ or $2.4 \times 2.2-\frac{1}{2} \times 2.4 \times(2.2-1.9)$	B2	oe B1 $\frac{1}{2} \times 2.4 \times(2.2-1.9)$ or $\frac{1}{2} \times 1.2 \times(1.9+2.2) \quad$ oe or $4.56+0.36$ (no working) or $5.28-0.36$ (no working)
4(c)	$\begin{aligned} & 2 \times \text { their } 4.6(=9.2) \text { or } \\ & 2 \times 4.92(=9.84) \text { or } \\ & \text { (their } 4.6+4.92)(\times 2) \\ & (=9.52 \text { or } 19.04) \end{aligned}$	M1	
	Their $19.04 \times 2(=38.08)$	M1	Their $19.04 \div 5(=3.808)$
	Their $38.08 \div 5$	M1	Their 3.808×2
	[7.6, 7.62]	A1 ft	Only ft from their 4.6(0) Accept 8 with correct working seen
Alt 4(c)	$(2 \times) 4.92$ sections need $(2 \times) 1$ litre or $(2 \times) 4.6$ sections need $(2 \times) 1$ litre	M1	
	$(2 \times) 4.92$ sections need $(2 \times) 1$ litre and $(2 \times) 4.6$ sections need $(2 \times) 1$ litre	M1	
	$(2+2) \times 2$	M1	oe eg 4×2
	8	A1	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

5(a)	$5 \div 2(=2.5)$ or $7.6 \div 2(=3.8)$	M1	oe
	$\pi \times$ their $2.5 \times$ their 2.5×87.5 or $\pi \times$ their $3.8 \times$ their 3.8×48	M1	oe
	[1715, 1718.3]	A1	[$546.875 \pi, 547 \pi$]
	[2174, 2179.2]	A1	$[693 \pi, 693.12 \pi]$ SC2 $[6868,6873.125]$ and $\quad[8705,8711.1322]$ SC1 $\quad[6868,6873.125]$ or $\quad[8705,8711.1322]$
	```Their [1715, 1718.3] and Their [2174, 2179.2] and Tube A```	Q1 ft	Strand (iii) - Correct ft conclusion based on their two volumes from using the correct formula twice
5(b)	$\begin{array}{lll} 3 \times 7.6+4 \times 0.5 & (=24.8) & \text { or } \\ 3 \times 7.6+3 \times 0.5 & (=24.3) & \text { or } \\ 3 \times 7.6+2 \times 0.5 & (=23.8) & \end{array}$	M1	$\begin{array}{ll} 22.8+2 & \text { or } \\ 22.8+1.5 & \text { or } \\ 22.8+1 & \end{array}$
	$7.6+2 \times 0.5 \quad(=8.6)$	M1	
	Their $24.8 \times$ their $8.6 \times 50$	M1	Their length $\times$ their width $\times 50$
	10664	A1 ft	ft From M1 M0 M1 or M0 M1 M1


6	$8000 \times \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}$	M2	oe eg three consecutive reductions by $\frac{1}{4}$ $\begin{aligned} & \text { M1 } 8000 \times \frac{3}{4} \quad(=6000) \text { or } \\ & 8000-\frac{1}{4} \times 8000 \quad(=6000) \end{aligned}$
	3375	A1	SC1 Answer 125   SC1 Answer 2000


Q	Answer	Mark	Comments


7(a)	Arc drawn inside rectangle, centre $X$, radius [ $3.8 \mathrm{~cm}, 4.2 \mathrm{~cm}$ ]	B2	B1 Arc drawn inside rectangle, centre $X$, radius outside allowed range or   At least 4 points marked within the allowed tolerance   or   Arc with at least half within the tolerance
7(b)	Correct (shortest) measurement $( \pm 2 \mathrm{~mm}$ ) taken from $Y$ to their arc drawn in (a) [ $8 \mathrm{~cm}, 8.4 \mathrm{~cm}$ ] if (a) correct	M1	
	[16, 16.8]	A1 ft	ft Their $[8,8.4] \times 2$   SC1 Arc drawn, centre $Y$, that touches $( \pm 2 \mathrm{~mm})$ their arc drawn in (a)
Alt 1   7(b)	Measures length and width correctly ( $\pm 2 \mathrm{~mm}$ ) and uses Pythagoras and subtracts 4   ie $\sqrt{[9.8,10.2]^{2}+[6.8,7.2]^{2}}-4$ (= $7.9,8.5])$	M1	Measures length and width correctly ( $\pm 2$ mm ), applies scale, uses Pythagoras and subtracts 8   ie $\sqrt{[19.6,20.4]^{2}+[13.6,14.4]^{2}}-8$
	[15.8, 17]	A1	Do not ft for this method
$\begin{aligned} & \text { Alt } 2 \\ & \text { 7(b) } \end{aligned}$	Measures XY correctly ( $\pm 2 \mathrm{~mm}$ ) and subtracts 4 ie $[12,12.4]-4 \quad(=[8,8.4])$	M1	Measures XY correctly ( $\pm 2 \mathrm{~mm}$ ), applies scale and subtracts 8 ie $[24,24.8]-8$
	[16, 16.8]	A1	Do not ft for this method


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


8(a)	$7^{2}-4.2^{2} \quad(=31.36)$	M1	
	$\sqrt{\text { their } 31.36}$	M1 Dep	$6^{2}$
	5.6	A1	36 and 31.36
Alt 8(a)	$15^{2}-13.9^{2} \quad(=31.79)$	M1	
	$\sqrt{\text { their 31.79 }}$	M1 Dep	$6^{2}$
	[5.6, 5.64]	A1	36 and 31.79
8(b)	$\cos (x)=\frac{13.9}{15}$	M1	$\cos (x)=\frac{15^{2}+13.9^{2}-\text { their } 5.6^{2}}{2 \times 15 \times 13.9}$
	$\cos ^{-1} \frac{13.9}{15}$	M1	If M1 seen, an answer of $[0.38,0.4]$ or [24.3, 24.6] implies the second M1
	[21.9, 22.1]	A1	
Alt 1 8(b)	$\sin (x)=\frac{\text { their } 5.6}{15}$	M1	$\text { Allow } \sin (x)=\frac{\text { their } 5.6}{15} \times \sin 90$
	$\sin ^{-1}\left(\frac{\text { their } 5.6}{15}\right)$	M1	Allow $\sin ^{-1}\left(\frac{\text { their } 5.6}{15} \times \sin 90\right)$   If M1 seen, an answer of $[0.38,0.4]$ or [24.3, 24.6] implies the second M1
	[21.9, 22.1]	A1	
$\begin{aligned} & \text { Alt } 2 \\ & \text { 8(b) } \end{aligned}$	$\tan (x)=\frac{\text { their } 5.6}{13.9}$	M1	
	$\tan ^{-1}\left(\frac{\text { their } 5.6}{13.9}\right)$	M1	If M1 seen, an answer of $[0.38,0.4]$ or [24.3, 24.6] implies the second M1
	[21.9, 22.1]	A1	
Alt 3   8(b)	$\cos (x)=\frac{15^{2}+(4.2+13.9)^{2}-7^{2}}{2 \times 15 \times(4.2+13.9)}$	M1	$(=[0.927,0.93])$   Allow $543 \cos (x)=503.61$
	$\cos ^{-1} \frac{15^{2}+(4.2+13.9)^{2}-7^{2}}{2 \times 15 \times(4.2+13.9)}$	M1	If M1 seen, an answer of $[0.38,0.4]$ or [24.3, 24.6] implies the second M1
	[21.9, 22.1]	A1	


Q	Answer	Mark	Comments
9	$\frac{1}{2} \times \pi \times 4^{2} \quad(=[25.1,25.14])$   or $\frac{1}{2} \times \pi \times 3.5^{2} \quad(=[19.2,19.245])$	M1	Working out one uncut area $8 \pi$ or $6.125 \pi$
	$\frac{1}{2} \times \pi \times 4^{2}+\frac{1}{2} \times \pi \times 3.5^{2}$	M1	Working out total uncut area   This mark implies the first M1
	[44.3, 44.4]	A1	$14.125 \pi$
	$\left(\frac{1}{2} \times\right) \pi \times 5^{2}$   or   fully correct attempt to work out total cut area	M1	
	[78.5, 78.6] or [39.25, 39.3] or [34.1, 34.2]	A1	$25 \pi \text { or } 12.5 \pi$   or $10.875 \pi$
Alt 9	$\pi \times 5^{2}-\pi \times 4^{2} \quad(=[28.26,28.3])$   or $\begin{aligned} & \frac{1}{2} \times \pi \times 4^{2}-\frac{1}{2} \times \pi \times 3.5^{2} \\ & (=[5.8875,5.9]) \end{aligned}$	M1	Working out one cut area   Allow for one (or half of) annulus cut area eg $1 \pi \times 5^{2}-\pi \times 4.5^{2}(=[14.9,15])$   eg $2 \pi \times 4.5^{2}-\pi \times 4^{2}(=[13.3,13.4])$   $9 \pi$ or $1.875 \pi$ or $4.75 \pi$ or $4.25 \pi$
	$\begin{aligned} & \left(\pi \times 5^{2}-\pi \times 4^{2}\right)+ \\ & \left(\frac{1}{2} \times \pi \times 4^{2}-\frac{1}{2} \times \pi 3.5^{2}\right) \end{aligned}$	M1	oe   Working out total cut area   This mark implies the first M1
	[34.1, 34.2]	A1	$10.875 \pi$
	$\left(\frac{1}{2} \times\right) \pi \times 5^{2}$   or   fully correct attempt to work out total uncut area	M1	
	$[78.5,78.6] \text { or }[39.25,39.3]$   or [44.3, 44.4]	A1	$25 \pi$ or $12.5 \pi$ or $14.125 \pi$


| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


10(a)	$(A=) 12$	B1	
	( $B=$ ) 28	B1 ft	ft 16 + their 12   SC1 $(10,12)$ and $(13,28)$   SC1 12 and 28 transposed
10(b)	$3250 \div 250$	M1	oe eg 3.25 $\div 0.25$ (0)
	13	A1	Allow M1 A1 for clear indication that it takes 3 seconds to fill the upper part of the container
	11.5	A1 ft	$\mathrm{ft} \frac{\text { their } 13-10}{2}+10$
$\begin{aligned} & \text { Alt } \\ & \text { 10(b) } \end{aligned}$	$10 \mathrm{sec} \rightarrow 2.5$ litres and $3.25-2.5=0.75$ and $0.75 \div 2 \div 0.25$	M1	oe eg works in ml
	1.5	A1	Allow M1 A1 for clear indication that it takes 3 seconds to fill the upper part of the container
	11.5	A1ft	ft 10 + their 1.5


| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


11(a)	30 with valid reason   eg 130 because (in 10 minutes) $P$ will be at the highest point   eg 230 ( 10 minutes) $180^{\circ}$ or half a turn   eg 330 because 5 is a quarter of 20 and a quarter turn is $90^{\circ}$	B2	B1 30 without valid reason or   Reason indicates they understand the context but answer not 30   eg 1 in 10 minutes $P$ will be at the highest point   eg 210 minutes $180^{\circ}$
11(b)(i)	Fully correct curve with two more sections   ie Maximum points at $(30,30)$ and $(50,30)$ and passing through $(25,15)(35,15)(40,0)(45,15)$ $(55,15)(60,0)$   All points $\pm \frac{1}{2}$ square	B3	B2 Two curved sections with maximum points at $(30,30)$ and $(50,30)$ and passing through at least four of   $(25,15)(35,15)(40,0)(45,15)$   $(55,15)(60,0)$   or   Fully correct curve for either $20 \leq t \leq 40 \text { or } 40 \leq t \leq 60$   B1 At least 3 of $(25,15)(30,30)(35,15)$ $(40,0)(45,15)(50,30)(55,15)$ and $(60,0)$ seen on graph or in working (eg, in a table)
11(b)(ii)	[5, 6]	B2	B1 Two values seen with at least one being [7, 7.5] or [12.5, 13]   or   Line $h=25$ drawn on first section of curve up to second point of intersection or   2 points marked on first section of curve (or $t$ axis) where $h=25$   SC1 [15, 18]


| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


12(a)	$35 \div 25$ (= 1.4)	M1	oe $25 \div 35 \quad(=0.7(1 \ldots))$
	Their $1.4 \times 16$	M1 Dep	$16 \div$ their $0.7(1 \ldots)$
	22.4	A1	
Alt 12(a)	$16 \div 25 \quad(=0.64)$	M1	oe $25 \div 16$ (= 1.56(25) or 1.6)
	Their $0.64 \times 35$	M1 Dep	$35 \div$ their 1.56(25)
	22.4	A1	
12(b)	$(35 \div 25)^{3} \quad(=2.744)$	M1	$(25 \div 35)^{3} \quad(=0.3644 \ldots)$ oe
	Their $2.744 \times 15$	M1 Dep	$15 \div$ their $0.3644 \ldots$
	[41, 41.2] and No	A1	
Alt 112(b)	$(35 \div 25)^{3} \quad(=2.744)$	M1	$(25 \div 35)^{3} \quad(=0.3644 \ldots)$ oe
	$42 \div$ their 2.744	M1 Dep	$42 \times \times$ their $0.3644 \ldots$.
	[15.3, 15.31] and No	A1	
Alt 212(b)	$(35 \div 25)^{3} \quad(=2.744)$	M1	$(25 \div 35)^{3} \quad(=0.3644 \ldots) \quad$ oe
	$42 \div 15(=2.8)$	M1 Dep	$15 \div 42(=0.3571 \ldots)$
	2.7(44) and 2.8 and No	A1	$0.36(44 \ldots)$ and $0.35(71 \ldots)$ and No
$\begin{aligned} & \text { Alt } 3 \\ & \text { 12(b) } \end{aligned}$	$\begin{aligned} & 25 \times 16 \times x(=400 x) \text { and } \\ & 35 \times \text { their } 22.4 \times 1.4 x(=1097.6 x) \text { and } \\ & \text { their } 400 x \div 15(=[26.6 x, 26.7 x]) \text { and } \\ & \text { their } 1097.6 x \div 42 \\ & (=[26.1 x, 26.13 \ldots x]) \end{aligned}$	M2	oe
	$\begin{aligned} & {[26.6 x, 26.7 x] \text { and }[26.1 x, 26.13 \ldots x]} \\ & \text { and No } \end{aligned}$	A1	


$\mathbf{Q}$	Answer	Mark	Comments


13(a)	2	B1	Allow [1.9, 2.1]
13(b)	Area calculated [236, 250] and divided by 16 and answer [14.75, 15.625]   (division by 16 implied by answer [14.75, 15.625])	B6	B5 Area calculated [236, 250] and divided by 16   B4 Area calculated [236, 250] or   Area calculated [200, 235] and divided by 16 (division by 16 implied by answer [12.5, 14.7])   or   Area calculated [251, 260] and divided by 16 (division by 16 implied by answer [15.7, 16.3])   B3 Area calculated $[200,235]$ or [251, 260]   B2 Any two correct areas under the graph or   counts squares and obtains [55, 65] squares of area 4 or $[12,16]$ squares of area 16   B1 Any one correct area under the curve or attempt seen to divide area under the graph into rectangles/ triangles/trapeziums or attempt seen to count squares
Alt 13(b)	Calculates average speeds over equal two second time intervals and divides by 8 and obtains answer 15.55 or 15.6   or   Calculates average speeds over equal four second time intervals and divides by 4 and obtains answer 15.3	B6	B5 Calculates average speeds over equal two second time intervals and divides by 8   or   Calculates average speeds over equal four second time intervals and divides by 4   B4 Calculates average speeds over equal eight second time intervals and divides by 2 and obtains answer 14   B3 Calculates average speeds over equal eight second time intervals and divides by 2   B2 Average speed for first 4 seconds is 20 and any one other correct average speed over 4 seconds   B1 Average speed for first 4 seconds is 20


$\mathbf{Q}$	Answer	Mark	Comments


$\mathbf{1 3 ( c ) ( \text { (i) }}$	Attempts to draw tangent at $t=8$	B1	
	Attempt to find slope or gradient of   their tangent	M1	Must use   vertical change $\div$ horizontal change and   use both scales consistently or use one   correct value
	$[-0.5,-1]$	Q1	Strand (i)   Positive answer is Q0
	Deceleration or acceleration	B1	Rate of change of speed

