GCSE MATHEMATICS

Original Specimen Assessment Materials Paper 1 Higher

 Mark Scheme
8300/1H

Version 3.0

This mark scheme does not reflect in full the expected standard and requirements for GCSE mathematics in 2017 and is superseded by the new specimen mark scheme published in June 2015

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.
If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.

M dep A method mark dependent on a previous method mark being awarded.

B dep
oe
[a, b]
Accept values between a and b inclusive.
3.14...

Allow answers which begin 3.14 eg $3.14,3.142,3.1416$

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a student has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the student. In cases where there is no doubt that the answer has come from incorrect working then the student should be penalised.

Questions which ask students to show working

Instructions on marking will be given but usually marks are not awarded to students who show no working.

Questions which do not ask students to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Students often copy values from a question incorrectly. If the examiner thinks that the student has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

1(a) $1.2(1)$	2.03	B1	
$\mathbf{1 (b)}$ $1.2(1)$	$2 . \dot{3}$	B1	

$\mathbf{2}$	$45-5 n$	B1	
$2.1 \mathrm{a}(1)$			

$\mathbf{3}$	9×10^{3}	B 1	
$1.3 \mathrm{a}(1)$			

$\left.\begin{array}{|c|l|l|ll|}\hline \begin{array}{c}\mathbf{4} \\ 1.3 a(2)\end{array} & 536 & \text { B2 } & \begin{array}{c}\text { B1 for } 6432 \div 12 \\ \text { or digits } 536 \text { eg } 0.0536\end{array} & 53600\end{array}\right]$

$\begin{gathered} \mathbf{5 (a)} \\ 2.3 a(1) \end{gathered}$	strong positive	B1	
$\begin{gathered} \mathbf{5 (b)} \\ 1.3 a(1) \end{gathered}$	Straight ruled line of best fit	B1	Through $(30,1)$ to $(35,1)$ and $(60,6)$ to $(65,6)$
2.3a (1)	4	B1	
$\begin{gathered} 5(\mathbf{c}) \\ 2.5 a(1) \end{gathered}$	Refers to danger when extrapolating outside the range of the data given or Refers to difficulty of interpolation at certain points eg 35 lessons suggests 1 or 2 tests	B1	oe eg line of best fit might not continue eg 20 lessons suggests 0 tests

Q	Answer	Mark	Comments

$\begin{gathered} 6 \\ \text { 1.3b (1) } \\ \text { 3.1b (2) } \end{gathered}$	Alternative method 1		
	$\frac{16}{40} \text { or } \frac{25}{40} \text { or } \frac{20}{40}$	M1	
	Valid comparison eg $\frac{16}{40}$ and $\frac{25}{40}$ and $\frac{20}{40}$ or $\frac{4}{40}$ and $\frac{5}{40}$	M1	oe
	$\frac{2}{5}$	A1	Must see working
	Alternative method 2		
	0.4 or 0.625 or 0.5	M1	40(\%) or 62.5(\%) or 50(\%)
	0.4 and 0.625 and 0.5 or 0.1 and 0.125	M1	40(\%) and 62.5(\%) and 50(\%) or $10(\%)$ and $12.5(\%)$
	$\frac{2}{5}$	A1	Must see working

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\mathbf{8}$	$\frac{\sqrt{3}}{2}$	B1	
$1.1(1)$			

$\begin{gathered} 9(a) \\ 2.1 a(1) \end{gathered}$	Ben and valid reason	B1	eg shortest time Took 4.5 minutes
$\begin{gathered} \text { 9(b) } \\ 2.3 a(4) \end{gathered}$	Makes 4 correct statements Must refer to all 3 boys	B4	Max B3 for only referring to 2 boys Max B2 for only referring to 1 boy B1 for each valid statement Valid statements could include: Alan started in the lead (Ben 2nd, Carl 3rd) After 2.5 minutes / 500 m Ben slowed down After 3.5 minutes / 600 m Ben increased speed After 4 minutes / 600 m Carl increased speed After 3 minutes / 800 metres Alan stopped (for 0.25 minutes) After 3.25 minutes Alan set off again Alan and Carl both finish in 5 minutes Ben and Carl both finish at the same speed Finishing order: Ben wins, Alan and Carl tie for 2nd

10	$(2 x+3 y=15.5)$ $2 x+2 y=12$	$(2 x+3 y=15.5)$ $3 x+3 y=18$	M1	Equates coefficients
	$y=3.5$ or $x=2.5$	A 1	oe	
	$x=2.5$ and $y=3.5$		A 1	

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

$\begin{gathered} 11 \\ 3.1 \mathrm{~b}(3) \end{gathered}$	15 from	6	6	8	9	21	B3	B2 5 integers with at least two criteria - mode 6 or - median 8 and - total 50 do not award B2 for mode and median only B1 5 integers with any one of these criteria - mode 6 - median 8 - total 50

12	$14 x+8-4 x-24+1$	M1	Allow one error
$2.2(3)$	$10 x-15$	A1	
	$5(2 x-3)$	A1	

13(a) 1.3b (2) $3.1 \mathrm{~d}(2)$	Measure $[8,8.4]$	B 1	
	their $[8,8.4] \times 80$	M 1	
	M 1		
13(b) $3.5(2)$	Estimate is low as road not straight	B 1	oe
	Estimate is low if average speed is lower or Estimate is high if average speed is higher	B 1	oe

$14(\mathrm{a})$ 1.3a (1) $3.1 \mathrm{c}(1)$	Scale factor $\frac{210}{60}$ or $\frac{60}{210}$	M1	oe Accept $210: 60$ or $60: 210$
	3.5	A1	
$14(b)$ $3.3(1)$	${\text { Between } 1^{\circ} \text { and } 2^{\circ} \text { clockwise }}^{\text {B1 }}$		

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Q	Answer	Mark	Comments

16	$y(x-5)=4-3 x$	M1	
	$x y-5 y=4-3 x$	M1	
	$x y+3 x=4+5 y$ or $x(y+3)=4+5 y$	M1	Isolating x terms
	$x=\frac{4+5 y}{y+3}$	A1	oe

17 $1.3 \mathrm{~b} \mathrm{(1)}$ $3.2(3)$	$8^{2}+6^{2}$ or 100	M1	
	$\sqrt{8^{2}+6^{2}}$ or 10	M1dep	oe May be on diagram
	$\pi \times$ their $10^{2} \times \frac{1}{2}$	M1	oe
	$50 \pi-96$	A1	

18	(19, 9)	B1	$\frac{15+23}{2}=19$ or $\frac{6+12}{2}=9$
	$(31-$ their 19$) \times \frac{2}{3}$ or 8 or (their $9-3) \times \frac{2}{3}$ or 4	M1	
	their $19-8$ or 11 or their $9+4$ or 13	M1	
	A1		

19	1.1 or 0.8	M1	May be implied
$1.3 \mathrm{~b}(1)$ $3.1 \mathrm{~b}(2)$ $3.3(1)$	$1.1^{2} \times 0.8$	M1	oe
	0.968 or $96.8(\%)$ or 0.032 or 3.2%	A1	
	3.2% decrease	A1ft	ft their 0.968 with both method marks awarded

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 0}$ $\frac{1}{3}$ B1
 $1.3 \mathrm{a}(1)$ | | |

$\begin{gathered} \mathbf{2 2} \\ 2.2(4) \end{gathered}$	Use of $\frac{\sqrt{2}}{\sqrt{2}}$ or $\frac{\sqrt{18}}{\sqrt{18}}$ or $\sqrt{50}=\sqrt{25 \times 2}$ or $\sqrt{18}=\sqrt{9 \times 2}$	M1	$\text { eg } \frac{26 \sqrt{2}}{2} \text { or } \frac{12 \sqrt{18}}{18}$ or $\frac{12}{3 \sqrt{2}}$ or $\frac{4}{\sqrt{2}}$ or $\frac{4 \sqrt{2}}{2}$
	One term simplified	A1	$\begin{aligned} & \text { ie } 13 \sqrt{2} \\ & 2 \sqrt{2} \\ & 10 \sqrt{2} \text { or } 5 \sqrt{2} \end{aligned}$
	Two terms simplified	A1	$\begin{aligned} & \text { ie } 13 \sqrt{2} \\ & 2 \sqrt{2} \\ & 10 \sqrt{2} \text { or } 5 \sqrt{2} \end{aligned}$
	$21 \sqrt{2}$ or $a=21$	A1	

\mathbf{Q}	Answer	Mark	Comments

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

24(a) 2.2 (2)	$\frac{n-1}{n}$ or $\frac{n-2}{n-1}$	M 1	
	$\frac{n-1}{n} \times \frac{n-2}{n-1}$ with cancelling shown	A 1	
24(b) 1.3a (1) 3.1b (1) 3.3 (1)	$\frac{n-2}{n}>0.9$ or $n-2>0.9 n$	M 1	
	21	M 1 dep	

25(a) 1.3b (3)	$\overrightarrow{B E}=\frac{2}{3} \mathbf{a}$ or $\overrightarrow{A E}=\frac{5}{3} \mathbf{a}$ or $-\mathbf{a}-$ their $\overrightarrow{B E}+\mathbf{b}+\mathbf{b}$	oe	
	$-\frac{5}{3} \mathbf{a}+\mathbf{b}$ or $\mathbf{b}-\frac{5}{3} \mathbf{a}$	M 1	
25(b)	$\overrightarrow{E F}=\frac{2}{5} \overrightarrow{E D}$	A 1	

$A Q A^{\square}$

Copyright © 2014 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

