

General Certificate of Secondary Education

Mathematics 4360

Unit 3 Higher Tier 43603H

Mark Scheme

Specimen Paper

Mark Schemes

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and registered charity number 1073334. Registered address AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

- M Method marks are awarded for a correct method which could lead to a correct answer.
- A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
- **B** Marks awarded independent of method.
- **Q** Marks awarded for quality of written communication.
- **M dep** A method mark dependent on a previous method mark being awarded.
- ft Follow through marks. Marks awarded following a mistake in an earlier step.
- **SC** Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
- **oe** Or equivalent. Accept answers that are equivalent.

eg, accept 0.5 as well as $\frac{1}{2}$

eeoo Each error or omission.

Unit 3 Higher Tier

Q	Answer	Mark	Comments
1(a)	Fully correct rotation	B3	B1 180° rotation with centre 0
			B1 90° clockwise rotation with wrong centre
			B2 90° clockwise rotation with centre 0
			B2 90° anticlockwise rotation with wrong centre
1(b)	x = -1	B2	B1 For coordinates plotted or line shown on graph

2	5 × 4.47	M1	
	Their 22.35 × 27	M1 dep	
	603	A1	
	600 < 603 so not speeding	A1	oe
	Alternate method		
	600 ÷ 27 (= 22.22)	M1	
	Their 22.22 × 10 ÷ 4.47	M1 dep	
	49.71	A1	
	49.71 < 50 so not speeding	A1	ое

3	Sometimes true	B1	
	Valid explanation	B1	eg, height of triangle can vary

4	39 ÷ 3 or 39 ÷ 6 or 19.5 ÷ 3 or 19.5 ÷ 6	M1	oe
	13 or 6.5 seen	A1	
	13 × 13	M1	
	169	A1	

Q	Answer	Mark	Comments
5	Multiples of 8 (at least 4) 8, 16, 24, 32, 40, 48, 56,	M1	Either 8x or $9(12 - x)$ $x + y = 12$
	Multiples of 9 (at least 4) 9, 18, 27, 36, 45, 54, 63,	M1	8x + 9(12 - x) = 103 $8x + 9y = 103$
	40 and 63	M1	$8x + 108 - 9x = 103 \qquad 9x + 9y = 108$
	5	A1	
6(a)	5 (equal) exterior angles must total	B1	$360 \div 5 = 72$ is not enough there must
	360° and $360 \div 5 = 72$ or $5 \times 72 = 360$		be some reference to exterior angles
6(b)	2 × 72 or 360 – (2 × 108)	M1	ое
	(<i>x</i> =) 144	A1	
	-		· · · · · · · · · · · · · · · · · · ·
7	$\pi \times 3.5 \times 3.5$ or $\pi \times 5 \times 5$ or $\pi \times 7 \times 7$	M1	12.25π or 25π or 49π

M1

A1

A1 ft

ft If both Ms awarded

 $\pi \times 3.5 \times 3.5 + \pi \times 5 \times 5$

 47.25π and 49π

He is correct

Q	Answer	Mark	Comments
8(a)	x(x + 10)	B1	
8(b)	(y+6)(y-6)	B1	
8(c)	5w + w = 9 - 6	M1	Allow one sign error
	6 <i>w</i> = 3	M1	For collecting like terms ft Their first line
	$\frac{1}{2}$	A1	oe Accept $\frac{3}{6}$
8(d)	LCM of 12 used correctly or attempt at LHS multiplied by 12	M1	
	6x + 9 + 4x - 20	M1	Allow one error
	10x - 11 = 18	A1	10x - 11 = 3 scores A0
	2.9	A1 ft	ft From one arithmetic error but not from $10x - 11 = 3$

9(a)	$\frac{1}{2} \times (7+11) \times 5$	M1	
	45	A1	
9(b)	Their 45 \times 16	M1	or 720
	19.3 × their 720	M1	
	13896	A1	
	13.896	A1 ft	ft If both Ms awarded

10	6 × 2 (× 1) or 12	B1	
	12 × 1.25	M1	
	15	A1	
	15 × 49.50 (+ 30) or 5 × 67.50 (+ 430) (= 337.50)	M1	
	(£)742.50 or (£)772.50	A1	
	Company B and (£)767.50	Q1	Strand (iii) An organised response leading to a correct conclusion

Q	Answer	Mark	Comments
		1	
11(a)	D	B1	
	A	B1	
	С	B1	
11(b)	Negative gradient and through point on positive <i>y</i> -axis	B1	'2' need not be marked

12(a)	$x^2 = 41^2 - 40^2$	M1	
	$x^2 = 81$ or $x = \sqrt{81}$ (= 9)	A1	
12(b)	$(n+1)^2 - n^2 = m^2$	M1	
	$n^2 + 2n + 1 - n^2 = m^2$	M1 dep	
	$m^2 = 2n + 1$	A1	
	m^2 is odd since $2n + 1$ is odd	A1	
	m is odd since odd \times odd = odd	A1	

13(a)	$2x^2-7x+9=0$	В3	oe –1 eeoo B2 Fully correct expression
13(b)	Reference to square root of negative number	B1	

14	Cos A = $(10^2 + 6^2 - 14^2)$ ÷ $(2 \times 6 \times 10)$	M1	
	$-\frac{1}{2}$	A1	
	120°	A1	

15	Angle <i>PRQ</i> = 180° – 134° or 46°	M1	
	Angle $POQ = 2 \times \text{their } 46^\circ \text{ or } 92^\circ$	M1	
	Reflex angle <i>POQ</i> = 268°	A1	

Q	Answer	Mark	Comments
Γ	Ι	1	
16(a)	(height of cylinder =) 9	B1	
	$\pi \times 3^2 \times$ their 9 or 81π	M1	
	$\frac{2}{3} \times \pi \times 3^3$ or 18π	M1	ое
	99π	A1	
16(b)	Their 49.5 π – their 18 π or 31.5 π	M1	Must see use of ' $\frac{1}{2}$ of their 99 π '
	Their 31.5 π = $\pi \times 3^2 \times h$	M1 dep	dep on previous M1
	$h = \text{their } 31.5\pi \div (\pi \times 3^2) \text{ or } 3.5$	M1	
	<i>d</i> = 6.5	Q1	Strand (ii)
			For correct answer supported by logical working showing key steps
с		I	
17	Attempt to rewrite	M1	
	$x^{2}-5x+3=0$ as $x^{2}-4x+1=x-2$		
	Identify $(y =) x - 2$	A1	
	Accurately draws line $y = x - 2$	M1 dep	
	(x=) 0.7 and 4.3	A1	ft Their line if both M1s earned