General Certificate of Secondary Education

Mathematics 4360

Unit 3 Higher Tier 43603H

Mark Scheme

Specimen Paper

Mark Schemes

Principal Examiners have prepared these mark schemes for specimen papers. These mark schemes have not, therefore, been through the normal process of standardising that would take place for live papers.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk Copyright © 2009 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.

B Marks awarded independent of method.
Q Marks awarded for quality of written communication.
Mdep A method mark dependent on a previous method mark being awarded.
ft Follow through marks. Marks awarded following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe \quad Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
eeoo Each error or omission.

Unit 3 Higher Tier

\mathbf{Q}	Answer	Mark	Comments

1(a)	Fully correct rotation	B3	B1 180° rotation with centre 0 B1 90° clockwise rotation with wrong centre B2 90° clockwise rotation with centre 0 B2 90° anticlockwise rotation with wrong centre
1(b)	$x=-1$	B2	B1 For coordinates plotted or line shown on graph

2	5×4.47	M1	
	Their 22.35×27	M1 dep	
	603	A1	
	$600<603$ so not speeding	A1	oe
	Alternate method		
	$600 \div 27(=22.22)$	M1	
	Their $22.22 \times 10 \div 4.47$	M1 dep	
	49.71	A1	
	$49.71<50$ so not speeding	A1	oe

3	Sometimes true	B1	
	Valid explanation	B1	eg, height of triangle can vary

$\mathbf{4}$	$39 \div 3$ or $39 \div 6$ or $19.5 \div 3$ or $19.5 \div 6$	M1	oe
	13 or 6.5 seen	A1	
	13×13	M1	
	169	A1	

\mathbf{Q}	Answer	Mark	Comments

5	Multiples of 8 (at least 4) $8,16,24,32,40,48,56, \ldots$	M1	Either $8 x$ or $9(12-x)$	$x+y=12$
	Multiples of 9 (at least 4) $9,18,27,36,45,54,63, \ldots$	M1	$8 x+9(12-x)=103$	$8 x+9 y=103$
	40 and 63	M1	$8 x+108-9 x=103$	$9 x+9 y=108$
	5	A1		

6(a)	5 (equal) exterior angles must total 360° and $360 \div 5=72$ or $5 \times 72=360$	B1	$360 \div 5=72$ is not enough \ldots there must be some reference to exterior angles
$\mathbf{6 6 (b)}$	2×72 or $360-(2 \times 108)$	M1	oe
	$(x=) 144$	A1	

7	$\pi \times 3.5 \times 3.5$ or $\pi \times 5 \times 5$ or $\pi \times 7 \times 7$	M 1	12.25π or 25π or 49π
	$\pi \times 3.5 \times 3.5+\pi \times 5 \times 5$	M 1	
	47.25π and 49π	A 1	
	He is correct	A1 ft	ft If both Ms awarded

\mathbf{Q}	Answer	Mark	Comments

8(a)	$x(x+10)$	B1	
8(b)	$(y+6)(y-6)$	B1	
8(c)	$5 w+w=9-6$	M1	Allow one sign error
	$6 w=3$	M1	For collecting like terms ft Their first line
	$\frac{1}{2}$	A1	$\text { oe Accept } \frac{3}{6}$
8(d)	LCM of 12 used correctly or attempt at LHS multiplied by 12	M1	
	$6 x+9+4 x-20$	M1	Allow one error
	$10 x-11=18$	A1	$10 x-11=3$ scores A0
	2.9	A1 ft	ft From one arithmetic error but not from $10 x-11=3$

9(a)	1	M1	
	45	A1	
	Their 45×16	M1	or 720
	$19.3 \times$ their 720	M1	
	13896	A1	
	13.896	A1 ft	ft If both Ms awarded

10	$6 \times 2(\times 1)$ or 12	B1	
	12×1.25	M1	
	15	A1	
	$\begin{aligned} & 15 \times 49.50(+30) \text { or } \\ & 5 \times 67.50(+430)(=337.50) \end{aligned}$	M1	
	(£)742.50 or (£)772.50	A1	
	Company B and (£)767.50	Q1	Strand (iii) An organised response leading to a correct conclusion

\mathbf{Q}	Answer	Mark	Comments

$\mathbf{1 1 (a)}$	D	B1	
	A	B1	
	C	B1	
$\mathbf{1 1 (b)}$	Negative gradient and through point on positive y-axis	B1	'2' need not be marked

12(a)	$x^{2}=41^{2}-40^{2}$	M 1	
	$x^{2}=81$ or $x=\sqrt{81}(=9)$	A 1	
12(b)	$(n+1)^{2}-n^{2}=m^{2}$	M 1	
	$n^{2}+2 n+1-n^{2}=m^{2}$	M1 dep	
	$m^{2}=2 n+1$	A 1	
	m^{2} is odd since $2 n+1$ is odd	A 1	
	m is odd since odd \times odd $=$ odd	A 1	

13(a)	$2 x^{2}-7 x+9=0$	B3	oe -1 eeoo B2 Fully correct expression
13(b)	Reference to square root of negative number	B1	

14	Cos $\mathrm{A}=\left(10^{2}+6^{2}-14^{2}\right)$ $\div(2 \times 6 \times 10)$	M 1	
	$-\frac{1}{2}$	A 1	
	120°	A 1	
15	Angle $P R Q=180^{\circ}-134^{\circ}$ or 46°	M 1	
	Angle $P O Q=2 \times$ their 46° or 92°	M 1	
	Reflex angle $P O Q=268^{\circ}$	A 1	

\mathbf{Q}	Answer	Mark	Comments

16(a)	(height of cylinder $=$) 9	B1	
	$\pi \times 3^{2} \times$ their 9 or 81π	M1	
	$\frac{2}{3} \times \pi \times 3^{3}$ or 18π	M1	oe
	99π	A1	
16(b)	Their 49.5π - their 18π or 31.5π	M1	Must see use of ' $\frac{1}{2}$ of their 99π '
	Their $31.5 \pi=\pi \times 3^{2} \times h$	M1 dep	dep on previous M1
	$h=$ their $31.5 \pi \div\left(\pi \times 3^{2}\right)$ or 3.5	M1	
	$d=6.5$	Q1	Strand (ii) For correct answer supported by logical working showing key steps

17	Attempt to rewrite $x^{2}-5 x+3=0$ as $x^{2}-4 x+1=x-2$	M 1	
	Identify $(y=) x-2$	A1	
	Accurately draws line $y=x-2$	M1 dep	
	$(x=) 0.7$ and 4.3	A1	ft Their line if both M1s earned

