AQA

General Certificate of Secondary Education November 2010

Mathematics
43055/2H
Higher
Module 5 Paper 2

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The following abbreviations are used on the mark scheme:

M Method marks awarded for a correct method.
M dep \quad A method mark which is dependent on a previous method mark being awarded.

A Accuracy marks awarded when following on from a correct method. It is not necessary always to see the method. This can be implied.

B Marks awarded independent of method.
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special Case. Marks awarded for a common misinterpretation which has some mathematical worth.
oe \quad Or equivalent.

1 a	8	B 1	
1 b	$4 y-20(=28)$	M 1	$(y-5=) \frac{28}{4}(=7)$
	$4 y=48$	A 1	$y-5=7$
	12	A 1 ft	ft from an equation SC 18.25 oe
$\frac{2}{2}$ (and) $\frac{11}{2}$	M 1	2 (and) $5 \frac{1}{2}$ oe $2 \leq w \leq 5$ or $2 \leq w<6$	
	$2,3,4$ (and) 5	A 2	M 1 A 1 for 3, 4 (and) 5 only M 1 A 1 for 2, 3 (and) 4 only

2a	4	B1	
2b	60	B1	
2c	16	B1	
2d	Cold because the line is steeper or other valid explanation	B1	Using gradients is a valid explanation eg 1 Cold with 15 ($1 / \mathrm{min}$) and $5(1 / \mathrm{min})$ seen eg 2 Cold with 3 and 1 seen B0 Cold with no valid explanation
2e	$100 \div 20$	M1	Line of gradient - 20 drawn from $(20,100)$ on the graph or 25 seen
	5	A1	SC1 4.5 or 4 min 30 s

3	$2 x+x=180$ or $3 x=180$ or $180 \div 3$	M 1	52×3	$52 \times 2(=104)$
	$(x=) 60$	A 1	156	$(180-104=) 76$
	Should be 52	A 1 ft	Should be 180	Should be 52

4 a	(Conversion factor) 2.2	B1	or 2.21 or $2.205 \ldots$
	$8 \div$ their 2.2 or $8 \div 2$ or 8×0.5	M1	$3.8 \times$ their 2.2 or 3.8×2 or $3.8 \div 0.5$
$3.6(\ldots)$ (and) Robert	A1 ft	8.36 or 8.4 (and) Robert SC1 A weight calculated for one person with units shown (working must be seen) and correct person selected (ft)	
4b	4000000	B1	

5	All 3 lines drawn correctly	B2	B1 for any one line drawn correctly
	$\frac{1}{2} \times$ their base \times their height $\left(\frac{1}{2} \times 5 \times 5\right.$ if correct $)$	M1	their 3 lines must make a triangle
	12.5	A1 ft	oe ft from any triangle

$6 a$	-	B1	
$6 b$	$\div \times$	B1	Only this order
$6 c$	\div	B1	
$6 d$	+-	B1	Either order

7	6	-2	-10 in any order	B2	B1 for any 2 correct in any order

8a

9	$16 \times 4(=64)$	M1	
$\pi(\times) 8^{2}(\div 2)$ or $64 \pi(\div 2)$ $(=[200.9,201.1])$	M1	Condone $\pi(\times) 16^{2}(\div 2)$ $(=[401.9,402.2])$ but can only subsequently score B1 ft	
	M1	$\frac{\pi(\times) 8^{2}}{2}+16 \times 4$ is M3	
	A1		
	ft to 2 or 3 sf from value seen >2 or 3 sf eg do not accept 164 if 164.55 seen for A1		

10a	$3 x(4 x-1)$ or $-3 x(1-4 x)$	B2	B1 for $x(12 x-3)$ or $3\left(4 x^{2}-x\right)$ or $-x(3-12 x)$ or $-3\left(x-4 x^{2}\right)$
10b	$(x+10)(x-3)$	B2	B1 for $(x \pm a)(x \pm b)$ where $a b=30$

11	Any two of these equations correct $\begin{aligned} & 2 x+3 y=26 \\ & x+2 y=15 \\ & x+y=26-15(=11) \end{aligned}$	M2	oe M1 for any one correct equation
	Uses their two equations and attempts to make coefficients of one letter equal and attempts to subtract	M1	
	$x=7$ and $y=4$	A1	
	23	A1	
	Alternative method 1		
	26-15 (= 11)	M1	
	$15-$ their 11 ($=4$)	M1	
	$\begin{aligned} & 15-2 \times \text { their } 4(=7) \\ & \text { or } \frac{26-3 \times \text { their } 4}{2}(=7) \\ & \hline \end{aligned}$	M1	
	7 and 4	A1	
	23	A1	
	Alternative method 2		
	$2 \times 15-26$ (= 4)	M3	30-26
	7 and 4	A1	
	23	A1	

12ai	Angle at centre is twice angle at circumference	B1	oe Allow middle for centre Allow edge or outside for circumference
12aii	Opposite angles in a cyclic quadrilateral add up to 180°	B1	oe
12 b	$(S O Q=) 100^{\circ}$ and $(S R Q=) 130^{\circ}$ and opposite angles are not equal	B2	oe $(S O Q=) 100^{\circ}$ and $(S R Q=)$ B1 $(S O$ a 130° with no valid explanation B1 One correct angle $(S O Q=) 100^{\circ}$ or $(S R Q=) 130^{\circ}$ and opposite angles are not equal

13a	$(y=) 2-3 x$	M1	
	-3	A1	SC1 Answer 3 or $-3 x$
13b	0,2	B1	

14a	B or $(y=) 2 \sin x$	B1	
	A or $(y=) \cos x$	B1	
	D or $(y=) \sin x$	B1	
14bi	Line from $(0,5)$ to $(6,9)$	B1	
14bii	Line from $(-5,2)$ to $(-1,-2)$	B1	
14biii	Line from $(-1,-3)$ to $(3,1)$	B1	

15	$\frac{\sin C}{14}=\frac{\sin 52}{15}$	M 1	oe
	$(\sin C=) \frac{\sin 52}{15} \times 14$	M 1	$0.735(\ldots)$ or 0.74
$(C=) 47(.3 \ldots)$	A 1		
$[80.65,81]$	A 1 ft	$\mathrm{ft} 180-52-$ their C Must have gained M 2	

16	$\frac{1}{3} \times 15 \times 15 \times(8+12)$	M1	
	1500	A1	
	$15 \times \frac{8}{20}(=6)$	M1	oe
	their 1500 $-\frac{1}{3} \times \text { their } 6 \times \text { their } 6 \times 8$	M1 dep	dep on M2
	1404	A1	Accept 1400 with correct working
	Alternative method		
	$\frac{1}{3} \times 15 \times 15 \times(8+12)$	M1	
	1500	A1	
	$8^{3}: 20^{3}$ ($=512: 8000$)	M1	oe eg 8:125
	their $\frac{8000-512}{8000} \times$ their 1500	M1 dep	$\begin{aligned} & =0.936 \times 1500 \text { oe } \\ & \text { dep on M2 } \end{aligned}$
	1404	A1	Accept 1400 with correct working

