Surname	,				Other	Names			
Centre Number	entre Number Candidate Number		ate Number						
Candidate Signature									

For Examiner's Use

General Certificate of Secondary Education June 2009

AQA

MATHEMATICS (MODULAR) (SPECIFICATION B)
Module 5 Higher Tier
Paper 1 Non-calculator

43055/1H

Monday 18 May 2009 1.30 pm to 2.45 pm

For this paper you must have:

· mathematical instruments.

You must not use a calculator.

Time allowed: 1 hour 15 minutes

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book.

Information

- The maximum mark for this paper is 70.
- The marks for questions are shown in brackets.
- You may ask for more answer paper, graph paper and tracing paper. This must be tagged securely to this answer book.

Advice

• In all calculations, show clearly how you work out your answer.

For Examiner's Use				
Pages	Mark			
3				
4–5				
6–7				
8–9				
10-11				
12–13				
14–15				
16–17				
18				
TOTAL				
Examiner's Initials				

Formulae Sheet: Higher Tier

Area of trapezium = $\frac{1}{2}(a+b)h$

Volume of prism = area of cross-section \times length

Volume of sphere =
$$\frac{4}{3}\pi r^3$$

Surface area of sphere = $4\pi r^2$

Volume of cone =
$$\frac{1}{3}\pi r^2 h$$

Curved surface area of cone = πrl

In any triangle ABC

Area of triangle = $\frac{1}{2}ab \sin C$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \ne 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

	Answer all questions in the space	ees provided.	
1 (a)	Solve the equation $7x - 3 = 60$		
	Answer $x = \dots$		(2 marks)
l (b)	y is an odd integer.		
	For each statement tick the correct box.		
		True Fa	alse
	7y - 3 is never odd		
	7y - 3 is never prime		
	7y - 3 is never a multiple of 7		(3 marks)
()		1. 7 . (2	(5 marks)
(c)	Write down one integer which satisfies the inequ Answer		(1 mark)
	Turn over for the next que	estion	

2 The graph shows a car journey from London to Brighton and back.

Distance from

2	(a)	What is the average speed of the car on the journey to Brighton?
		State the units of your answer.

•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •

Answer		(3 marks)
--------	--	-----------

(b) Is the average speed on the return journey faster or slower? Explain your answer.

(1 mark)

3	A shopkeeper uses these formulae to calculate the total cost when customers pay by monthly instalments.				
	d = 0.2C				
	C = d + 24m				
	C is the total cost in pounds. d is the deposit in pounds. m is the monthly instalment in pounds.				
	The total cost of a sofa is £600.				
	Work out the value of m .				
	Answer				

Turn over for the next question

7

4 Airport runways have a two-digit number painted on them. These numbers are used to work out the direction of the runway.

To work out the three-figure bearing, multiply the runway number by 10.

Here is a diagram of a runway on a three-figure bearing of 280° and a runway on a three-figure bearing of 040° .

4	(a)	(i)	Write down	the three.	-figure	hearing	for a	runway	nointing	due	South
7	(a)	(1)	WIIIC GOWII	uic unicc.	-mguic	ocarmg	ioi a	runway	pomung	uuc	Soum.

Answer	 0	(1 mark	زح
THISWCI		(i iii wi i	۸

4 (a) (ii) Write down the runway number for a runway pointing due South.

Answer		(I	mai	rk,
--------	--	----	-----	-----

4 (a) (iii) A runway has a three-figure bearing of 060°.

Write down the runway number.

Answer (1 mark)

4 (b) A runway is being painted.

By measuring the three-figure bearing, work out the runway number.	
Answer	(2 marks)

Turn over for the next question

5

5 Triangles A, B and C are shown on the grid.

5 (a) Describe fully the **single** transformation that maps triangle A onto triangle B.

•••••	•••••	
		(3 marks)

5 (b) Write down the vector which describes the translation of triangle A onto triangle C.

Answer (1 mark)

6 (a) In the diagram, AB is parallel to CD.

Not drawn accurately

Write down the value of *x*. Give a reason for your answer.

Answer degrees

6 (b) In the diagram, *PQ* is parallel to *RS*.

Not drawn accurately

Work out the value of y.

Answer degrees (2 marks)

7	(a)	Expand and simplify	$2x^2(x+6) + 3x(x-5)$	
		Answe	r	(3 marks)

7 (c) Factorise $x^2 - 16y^2$

.....

8 (a) The diagram shows a regular pentagon. One side has been extended.

- **8** (a) (i) Which **one** of these statements is true?
 - A The exterior angle of a regular pentagon is equal to $360^{\circ} \div 5 = 72^{\circ}$
 - B The interior angle of a regular pentagon is equal to $360^{\circ} \div 5 = 72^{\circ}$
 - C The exterior angle of a regular pentagon is equal to $360^{\circ} 72^{\circ} = 288^{\circ}$
 - D The interior angle of a regular pentagon is equal to $360^{\circ} 72^{\circ} = 288^{\circ}$

Answer (1 mark)

8	(a)	(ii)	The diagram	shows two	o identical	regular pentagons	touching inside a	a rectangle.

Not drawn accurately

Work out th	e value of t	•					
			•••••			•	
	••••••	••••••	•	•••••	•••••		
	Answer				deg	rees	(2 marks)

8 (b) The diagram shows a pentagonal prism.

The area of the cross-section is 90 cm².

The volume of the prism is 720 cm³.

Work out the leng	gth of the prism.			
		 •••••	•••••	
	Answer	 	cm	(2 marks)

12

9 The diagrams show a trapezium and a parallelogram.

Not drawn accurately

9	(a)	Use the trapezium to explain why	2x + y = 180
_	(u)	ose the trapezium to explain why	2x + y = 100

•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••

(1 mark)

9	(b)	The parallelogram	can be used to	form another	equation	connecting x and	dу.
---	-----	-------------------	----------------	--------------	----------	--------------------	-----

	 	 	٠.

$$3x + y = 130$$

$$3x + y = 230$$

$$3x = y - 50$$

$$3x + y = 410$$

(1 mark)

9 (c) Hence, or otherwise, work out the values of
$$x$$
 and y .

•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••

.....

Answer
$$x = \dots, y = \dots$$
 (3 marks)

10 a, b and h represent lengths.

Here are some units.

 cm^2 gram/cm³ kg cm cm^3

cm/second

For each expression, write down the suitable unit from the list.

10 (a)
$$\frac{1}{2}(a+b)h$$

(1 mark)

(b) a+b

> Answer (1 mark)

10 (c) abh

> (1 mark) Answer

11 (a) A straight line has gradient 2 and passes through the point (0, 8)

Write down the equation of the line.

Answer (1 mark)

11 (b) A different line has equation y = 3x + 6

Write down the coordinates of any **two** points on the line.

Answer (....., and (.....) (2 marks)

11 Write down the gradient of a line that is perpendicular to the line y = 4x(c)

(1 *mark*)

Write down the equation of a line that is perpendicular to the line y = 4x11 (d)

(1 mark)

12 In the diagram, AB is a diameter of the circle.

Work out the value of x.

Not drawn accurately

		•••••	
A	Answer	degrees	(3 marks)

13	(a)	Show that	$9 + \frac{11}{x+2} =$	$= \frac{28}{x(x+2)}$	simplifies to	$9x^2 + 29x - 28 = 0$
				••••••		
				•••••••		(3 marks)
13	(b)	Solve 9x	$x^2 + 29x - 28$	= 0		
		•••••		••••••••••	•••••	
			Answer			(3 marks)

9

14 *OABC* is a quadrilateral.

D, E, F and G are midpoints of OA, AB, BC and OC respectively.

$$\overrightarrow{OA} = 2\mathbf{a}, \overrightarrow{OB} = 2\mathbf{b} \text{ and } \overrightarrow{OC} = 2\mathbf{c}$$

Not drawn accurately

Find the following vectors in terms of **a**, **b** and **c**.

For example $\overrightarrow{DG} = \mathbf{c} - \mathbf{a}$

14	(a)	AB

.....

Answer (1 mark)

14 (b)
$$\overrightarrow{BC}$$

.....

.....

Answer (1 mark)

14	(c)	Use your answers to parts (a) and (b) to show that $\overrightarrow{EF} = \mathbf{c} - \mathbf{a}$
		(1 mark)
14	(d)	Explain how you can tell that <i>DEFG</i> is a parallelogram.
		(1 mark)

Turn over for the next question

4

15 A sector AOB of a circle is shown below. The length of its arc AB is 10π cm.

The sector is folded so that the straight edges meet and form a cone as shown.

15	(a)	Calculate the radius of the base of the cone.
		Answer cm (3 marks)
15	(b)	The volume of the cone is 80π cm ³ .
		Work out the perpendicular height of the cone.
		Answer cm (3 marks)

END OF QUESTIONS

