Surname

Centre Number Candidate Number

Other Names

wjec cbac

GCSE

4250/01

S16-4250-01

GEOLOGY Theory Paper (Paper version of on-screen assessment)

A.M. WEDNESDAY, 25 May 2016

1 hour 30 minutes

For Examiner's use only		
Section	Maximum Mark	Mark Awarded
1.	11	
2.	15	
3.	9	
4.	19	
5.	15	
6.	18	
7.	13	
Total	100	

ADDITIONAL MATERIALS

In addition to this examination paper you will need a:

- Data Sheet;
- calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

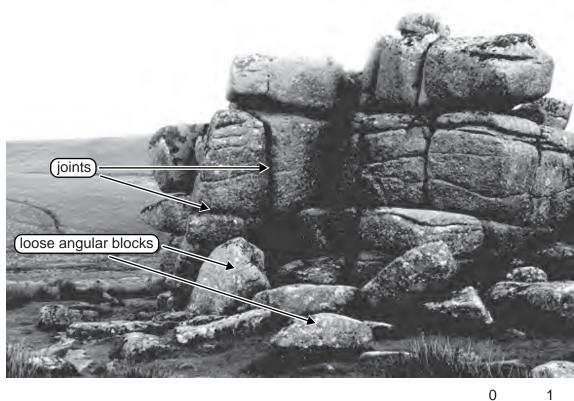
Answer all questions.

Write your answers in the spaces provided.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets alongside each question.

You are reminded that assessment will take into account the quality of written communication (*QWC*) used in your answers to **Section 2 Q4** and **Section 4 Q7**.


Examiner only

2

Answer **all** questions in each section.

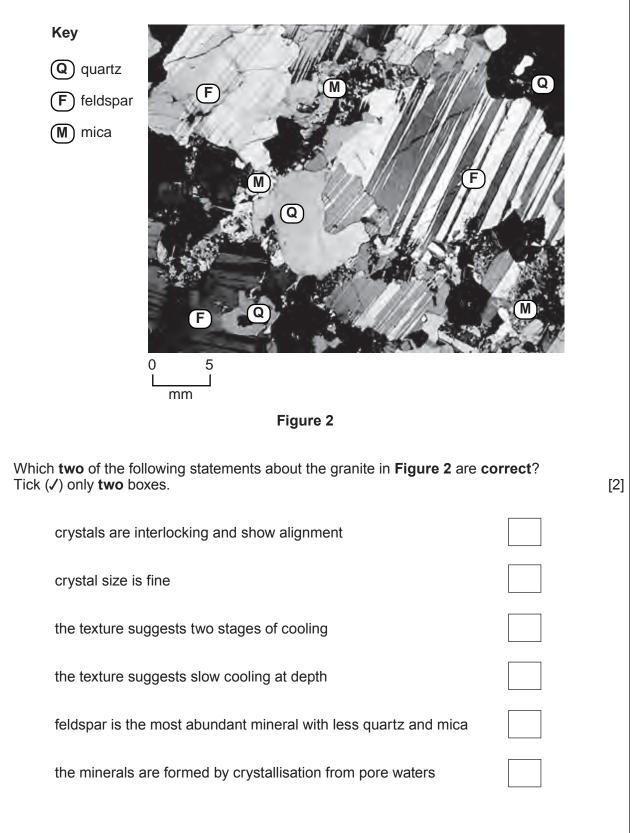
Section 1 – answer questions 1-5

Figure 1 shows a granite exposure on Dartmoor in south west England.

1. Which one of the following best describes the jointing in the granite? Tick (\checkmark) only one box. [1]

joints are in one direction	
joints are approximately horizontal and vertical	
joints are dipping at a low angle	
the granite shows columnar jointing	
jointing is randomly orientated	

2.	Describe the physical weathering process which most likely produced the loose angular blocks of rock at the base of the exposure in Figure 1 . [3]	Examiner only
3.	Which two of the following are NOT weathering processes? Tick (\checkmark) only two boxes. [2]	
	removal of weathered material by water, ice, wind or gravity	
	breaking down of minerals by the organic acids in soil	0
	reaction of calcite with weak acids produced by the dissolving of carbon dioxide in water	4250
	forcing apart of bedding planes by tree roots	
	alteration of granite to form clay and soluble products	
	wearing down of sand grains by collision with other grains	


3

Turn over.

Examiner only

Figure 2 is a microscope view of a specimen of granite.

4.

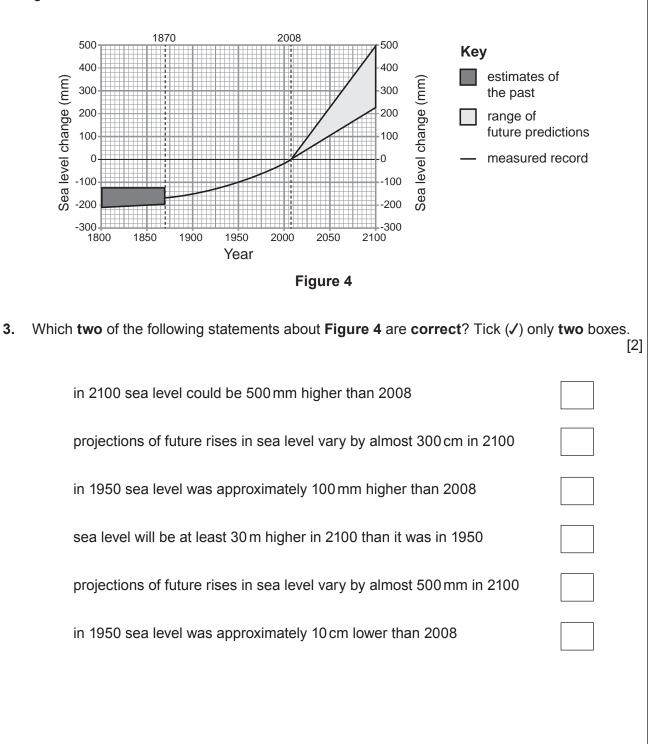
5. Using evidence from Figure 2 and the Data Sheet, explain why granite forms upland areas in [3]

11

4250 010005

Turn over.

6 Section 2 – answer questions 1-7 |Examiner only Figure 3 shows the extent of Arctic sea ice in 1980 and 2012. Arctic Greenland Russia sea ice North Pacific 1980 Arctic Greenland Russia sea ice North Pacific Alaska 2012 Figure 3 1. Which two of the following statements about the Arctic sea ice between 1980 and 2012 are **correct**? Tick (**J**) only **two** boxes. [2] between 1980 and 2012 the area covered by sea ice was reduced by approximately 5% in 1980 the area covered by sea ice was 50% less than in 2012 Alaska had more ice in 2012 than 1980 between 1980 and 2012 the area covered by sea ice was reduced by approximately 50%


there was less ice on the north coast of Russia in 2012 than in 1980

in 1980 there was sea ice in the North Pacific

2.	Explain one reason for the change in Arctic sea ice. [2	Examiner only

Figure 4 shows the measured sea level changes from 1870 to 2008 and predictions about future changes in sea level.

|Examiner

BLANK PAGE

9

Turn over.

10 Examiner only Figure 5 shows a raised beach on the west coast of Scotland. 25 old cliff line m 0 raised beach Figure 5 Explain how raised beaches may have formed during the Pleistocene as a result of relative 4. changes in sea level. [4 QWC] _____

	11		
5.	Which one of the following statements is correct ? Tick (/) only one box.	[1]	Examiner only
	reduction of ice cap albedo accelerates global cooling		
	decreasing ice volume reduces carbon dioxide in the atmosphere		
	burial of limestone increases carbon dioxide in the atmosphere		
	the enhanced greenhouse effect is caused by increased carbon dioxide in the atmosphere from burning fossil fuels		
	polar ice cores provide evidence of carbon dioxide increasing in the atmosphere as far back as 60 Ma (million years)		
6.	Which two of the following are examples of carbon sequestration? Tick (\checkmark) only two boxes.	[2]	
	emission of smoke by coal fired power stations		4250 010011
	global cooling		40
	the injection of carbon dioxide into exhausted oil traps		
	increased use of renewable energy		
	absorption of carbon dioxide by plants during photosynthesis followed by burial		
	increased electricity generation from nuclear power		
7.	Explain how volcanic emissions cause climate change.	[2]	

Section 3 – answer questions 1-5

Figure 6 shows a quarry face.

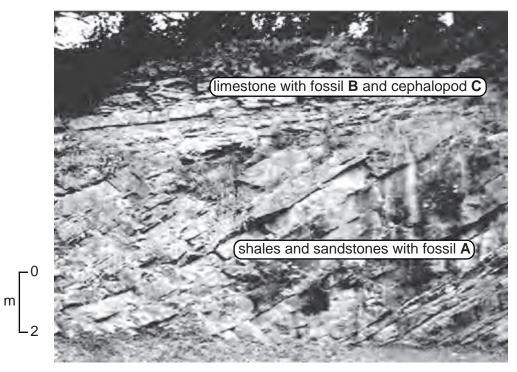
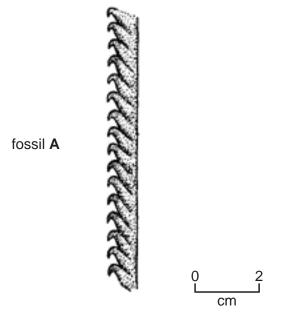
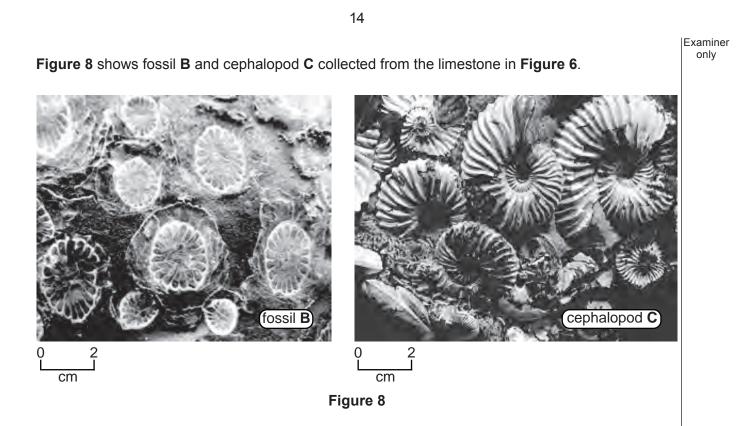


Figure 6

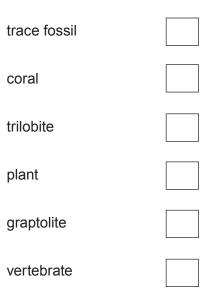
Figure 7 shows fossil A collected from the shales and sandstones in Figure 6.



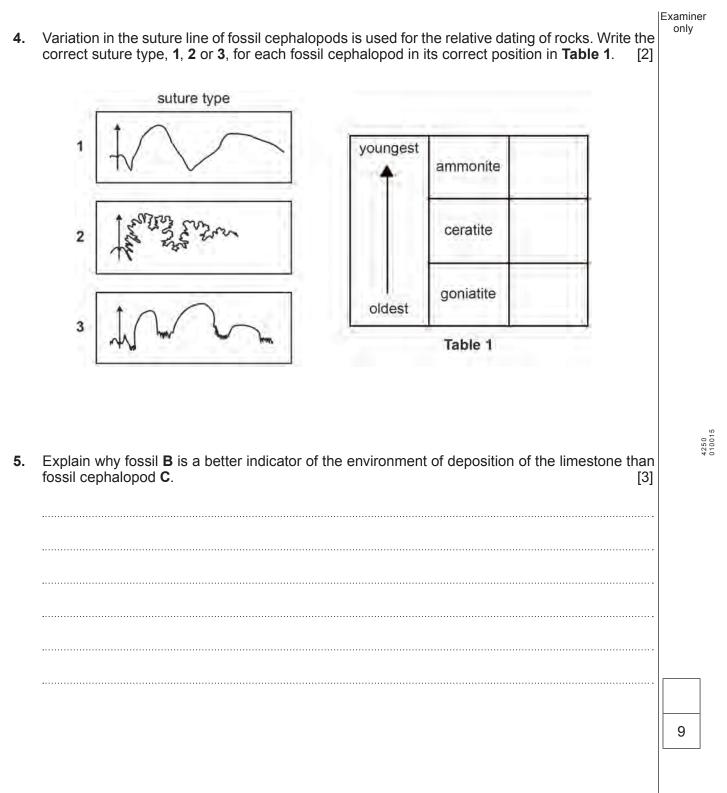

Figure 7

		10		
1.	Name the group to which fossi	A belongs. Tick (✓) only one box.	[1]	Examiner only
	trace fossil			
	coral			
	trilobite			
	plant			
	graptolite			
	vertebrate			
2.	Explain how changes in one m of rocks.	orphological feature of fossil A can be used for the relative dati	ing [2]	4250 010013
				4 0

.....



Turn over.



[1]

3. Name the group to which fossil **B** belongs. Tick (\mathcal{I}) only one box.

© WJEC CBAC Ltd.

15

Turn over.

Examiner only

[1]

Section 4 – answer questions 1-7

A turbidity current was triggered by an earthquake and cut through a number of telephone cables on the ocean floor. **Table 2** shows the time between cable breaks. The time of the earthquake is set at 0 minutes.

Cable position	Time between cable breaks (minutes)	Average velocity of turbidity current (km/minute)
cable 1 140 km from the epicentre at the top of the continental slope	56	2.5
cable 2 210 km from cable 1 at the bottom of the continental slope	120	1.75
cable 3 270 km from cable 2 on the abyssal plain	358	0.75
cable 4 40 km from cable 3 on the abyssal plain	80	

Table 2

1. Calculate the average velocity (km/minute) of the turbidity current between cables 3 and 4. You **must** show your working. Circle the correct value below. [2]

0.35 2.0 0.5 0.7 1.0

2. Give one reason for the change in the velocity of the turbidity current.

BLANK PAGE

17

Turn over.

Figure 9 is a graphic log showing a sedimentary sequence from a turbidite in a cliff face.

18

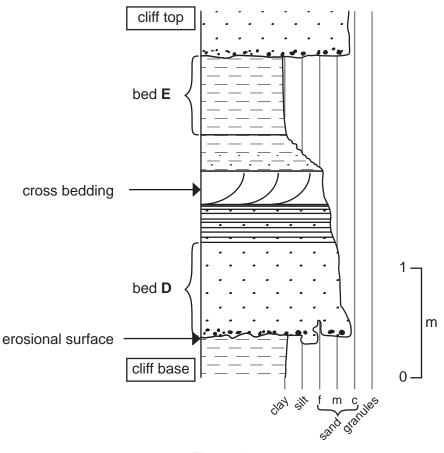
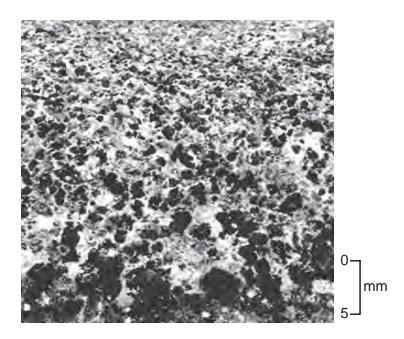



Figure 10 shows the sedimentary structure seen in bed D in Figure 9.

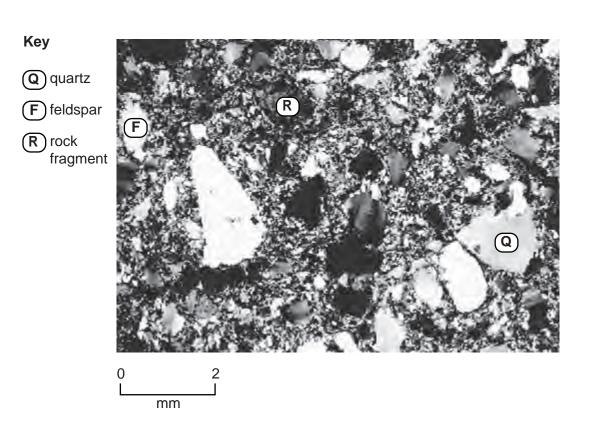


Figure 10

Which two of the following statements about the sedimentary structure in Figure 10 are correct?
 Tick (1) only two boxes.

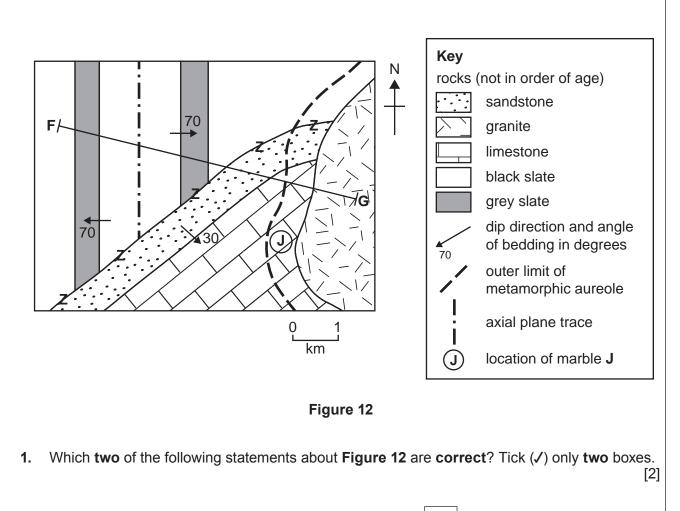
the structure shows ripple marks	
the structure is finely laminated	
the grains fine downwards	
the bed is inverted	
the grains fine upwards	
the structure is graded bedding	

Figure 11 is a microscope view of a rock sample from bed D in Figure 9.

4. Describe the texture of rock **D**. Tick (\checkmark) only **three** boxes.

crystalline	
clast Q is an angular fragment	
well sorted	
coarse-grained clasts	
poorly sorted	
medium-grained clasts	
foliated	

[3]


5.	Explain how the change in grain size between beds D and E in Fig of the currents that deposited them.		Examiner only
6.	Draw a line from each of the following rock descriptions to the corr	ect geological time. [4]	
	turbidites and black graptolitic shale	Mesozoic	
	till and flood basalts	Lower Palaeozoic	
	limestones and clays with ammonites present	Upper Palaeozoic	
	coral limestone overlain by coal and cross-bedded well sorted sandstones	Cenozoic	
7.	Explain how evidence from rocks and fossils indicates that the lat over time.	itude of Britain has changed [4 QWC]	
			19

Turn over.

Examiner only

Section 5 – answer questions 1-7

Figure 12 is geological map.

boundary Z-Z is a metamorphic aureole

the outcrop of the granite is discordant

the limbs of the fold have different angles of dip

the outcrop of the granite is concordant

boundary Z-Z is an unconformity

the granite is a dyke intrusion

3. List the relative ages of the following events in **Figure 12** by writing each of them in their correct position in **Table 3**. [2]

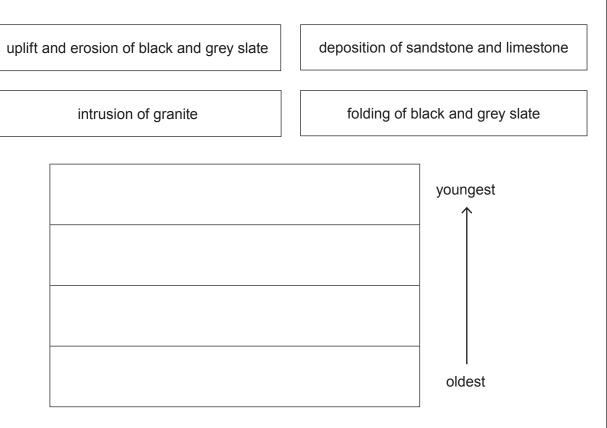
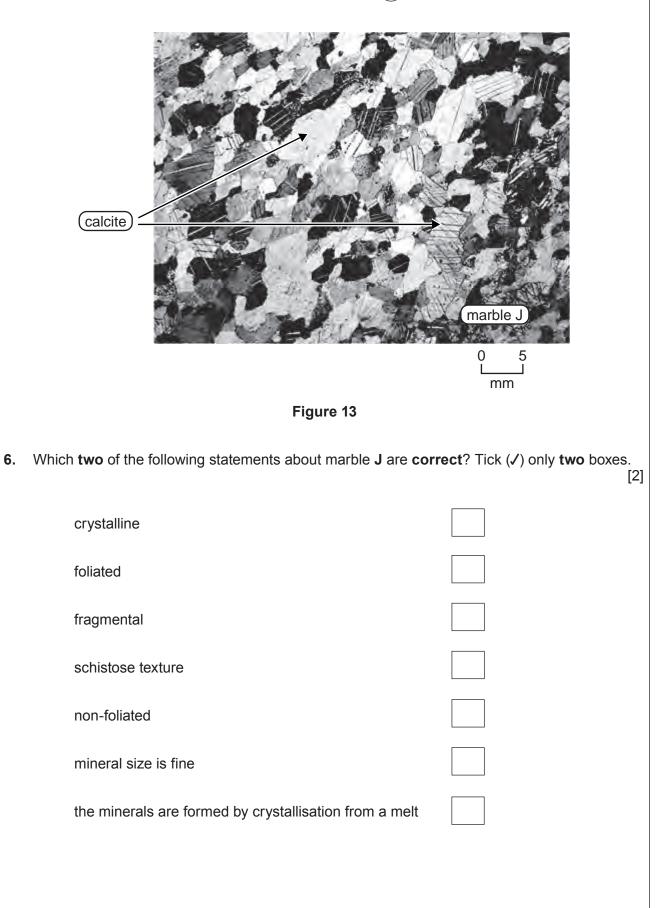
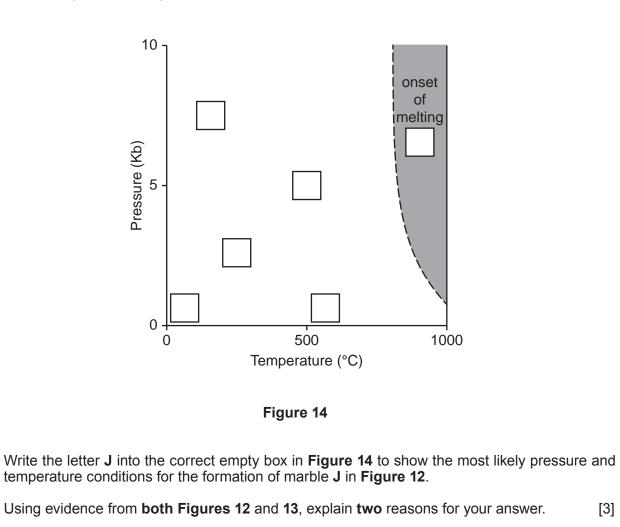


Table 3

Name the most appropriate method to determine the age of the sandstone relative to the limestone in Figure 12. Tick (✓) only one box. [1]


cross-cutting relationship	
radiometric dating	
superposition of strata	
lateral continuity	
included fragments	

	25		
5.	Which two of the following statements about the black and grey slate in Figure 1 Tick (✓) only two boxes.	2 are correct ? [2]	Examiner only
	the strike direction of the cleavage in the slates would be N-S		
	in Figure 12 slate is the rock which is formed at the highest temperature		
	slate is formed by recrystallisation of sandstone		
	slate is formed by the contact metamorphism of shale		
	the strike direction of the cleavage in the slates would be E-W		
	slate is formed by regional metamorphism		


26

Examiner only

Figure 13 is a microscope view of marble **J** from location (\mathbf{J}) in **Figure 12**.

Figure 14 is a graph showing the temperature and pressure conditions for metamorphism.

Reasons

7.

15

Examiner only

Section 6 – answer questions 1-7

Figure 15 is a map of Indonesia showing the plate boundary between the Eurasian and Indo-Australian plates.

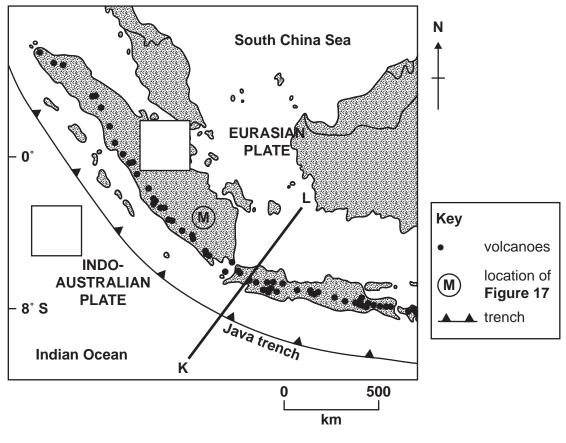


Figure 15

Figure 16 shows the depth of earthquake foci along the line K-L in Figure 15.

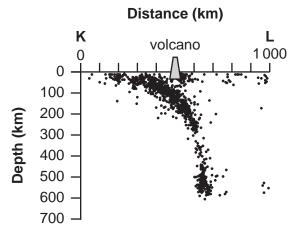
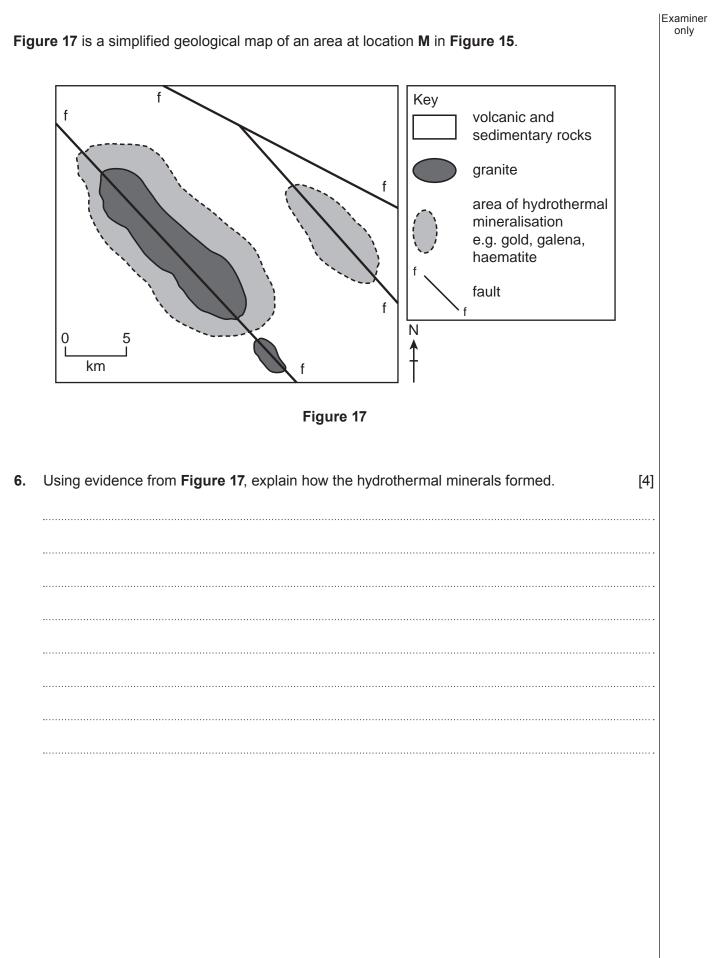


Figure 16

1.	Which two of the following statements are incorrect ? Tick (/) only two boxes.		own in Figures 15 and 16 [2]	Examiner only
	earthquakes show the position of	a rift valley		
	Indonesia is an arc shaped group	of islands		
	earthquakes show the position of	a subduction zone		
	earthquakes get progressively de	eper away from the trench		
	a group of shallow earthquakes o	ccur beneath the volcano		
	earthquakes are deepest under the	ne trench		
2.	Selecting from the choice below draw ar the directions of relative plate movemen		oxes in Figure 15 to show [1]	
3.	Draw a line from each of the following ig	gneous rocks to their most lik	ely region of formation. [3]	
		at a depth of 10 km within a f	old mountain chain	
	andesitic lava	at a depth of 10 km below the	e ocean floor	
	basalt with pillow structures	at the surface of an island are	c system	


at the axis of a mid-ocean ridge

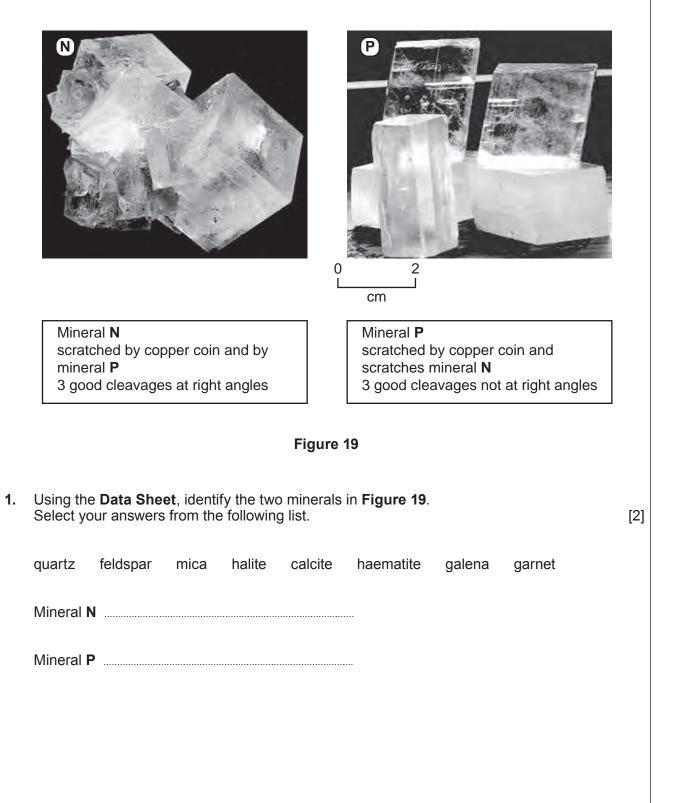
(4250-01)

at a depth of 35 km below the axis of a mid-ocean ridge

granite batholith

4.	Which two of the following statements Tick (/) only two boxes.	about volcanic activity are correct ?	[2]	Examiner only
	basalt magmas produce steep si	ided central vent volcanoes		
	the higher the viscosity of the ma	agma the steeper the volcanic cone		
	basalt magmas flow easily over	wide areas due to their high viscosity		
	magma which erupts under wate	er always forms fissure eruptions		
	lower viscosity magmas are mor	e explosive		
	andesites produce explosive vol	canoes		
5.	Draw a line from each of the follow description.	ing terms used in mineral prospecting to	o the correct [3]	:
		waste minerals found with useful minerals	5	
	ore minerals	all naturally occurring elements or compo	ounds	
	semi-precious stones	the amount of ore that can be extracted a	it a profit	
	gangue minerals	minerals containing valuable metal		
		minerals which are rare and valued for the	ir appearance	

32 Examiner only Figure 18 shows one method of processing rock to extract metals. chemical spray e.g. acids on to the heap heap of crushed rock including minerals which react with the chemical in the spray collection of liquid leachate and metal in solution plastic liner : water table sandstone not to scale Figure 18 7. State one environmental problem associated with the method of processing shown in Figure 18 and explain one measure that has been taken to prevent it. [3]

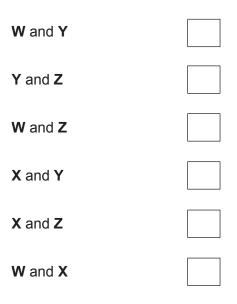

18

© WJEC CBAC Ltd.

Examiner only

Section 7 – answer questions 1-7

Figure 19 shows two minerals (N and P) and some of their properties.

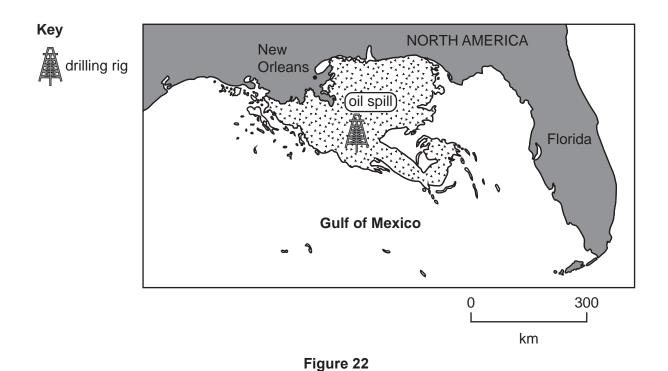


|Examiner only Figure 20 is a model showing how thick evaporite deposits can form. high rates of evaporation sea level deep shallow basin ocean evaporite barrie crystals sink to the bottom evaporite deposits not to scale Figure 20 2. Which two of the following statements about the formation of evaporite deposits in Figure 20 are incorrect? Tick (1) only two boxes. [2] evaporation in the deep ocean will produce thicker evaporite deposits evaporite formation requires a supply of saline water evaporite formation requires a warm and dry climate a temporary barrier to the ocean allows an increase of salinity of the water in the shallow basin slow subsidence of the shallow basin would not allow thick evaporites to form evaporites form by crystallisation from saturated solution

Figure 21 shows a geological cross-section where oil traps may be found. Key Sandstone Shale Shale Shale Shale Figure 21 Shale Figure 21 Shale Figure 21

35

In which one of the following pairs of locations in Figure 21 might oil and gas accumulate in both locations? Tick (✓) only one box. [1]


© WJEC CBAC Ltd.

Examiner only

4.	Which one of the following pairs of properties is most desirable for an oil reservoir rock? Tick (\checkmark) only one box	[1]	Examiner only
	low permeability and high porosity		
	low porosity and high permeability		
	high porosity and high permeability		
	low permeability and low porosity		

BLANK PAGE

In April 2010 a gas release and explosion (blowout) destroyed a drilling rig and well head in the Gulf of Mexico, killing 11 people. **Figure 22** is a map showing the location of the Deepwater Horizon drilling rig and resulting oil spill.

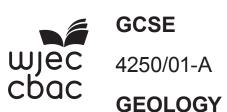
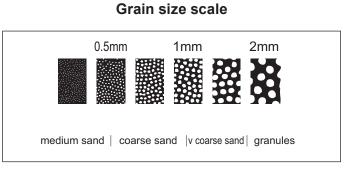


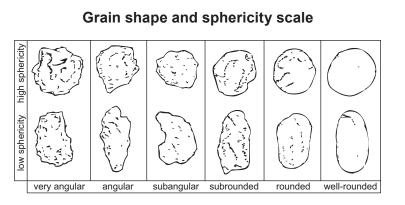
Table 4 shows how much oil was recovered from the well and what happened to the spilled oil (figures in thousands of barrels).

recovered from the well	800
spilled oil	
washed onshore or sunk to the bottom	1 120
evaporated	1220
dispersed naturally	640
dispersed by chemicals	780
removed by clean-up operations (burned and skimmed)	440

Table 4

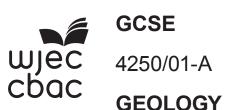
5.	What percentage of the total oil released was recovered from the well? Show your working. [2]	Examiner only
	Percentage =%	
6.	Describe one method of prospecting for oil and natural gas in deep water such as the Gulf of Mexico. [3]	f
7.	Describe one environmental consequence of an oil and gas leak in the Gulf of Mexico. [2]	
	END OF PAPER	13


GEOLOGY **DATA SHEET**


A.M. WEDNESDAY, 25 May 2016

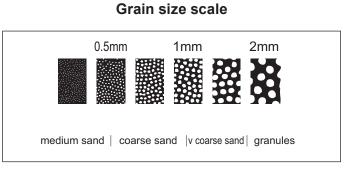
Name	Hardness (Mohs' Scale)	Typical Colour	Streak	Lustre	Cleavage (number of directions)
Quartz	7	colourless or white	scratches streak plate	glassy	none
Feldspar	6	white	scratches streak plate	pearly to glassy	2 good
Mica	21⁄2	silvery or brown	white	pearly to glassy	1 good
Halite	21⁄2	white	white	glassy	3 good
Calcite	3	white	white	glassy	3 good
Haematite	5½	black or red-brown	red-brown	metallic or dull	none
Galena	21⁄2	grey	grey	metallic	3 good
Garnet	7	red	white	glassy	none

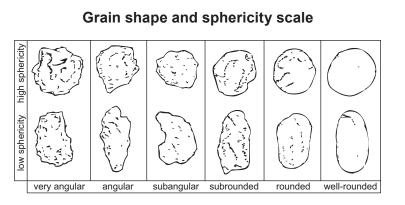
Physical properties of minerals in hand specimen


Mohs' scale of hardness				
Mineral/ hardness		Common equivalent		
Diamond	10			
Corundum	9			
Topaz	8			
Quartz	7			
Orthoclase feldspar	6	← steel pin		
Apatite	5			
Fluorite	4			
Calcite	3	copper coin finger nail		
Gypsum	2			
Talc	1			

Period Ma ago sub-Era Cenozoic Era 222 Quaternary A Neogene Tertiary Palaeogene 65 mammals reptiles birds sharks and rays Cretaceous Mesozoic bony fishes amphibians 142 Jurassic 206 Triassic 248 Permian 290 Carboniferous 50 families 354 Palaeozoic Devonian 417 Silurian 443 Ordovician 495 Cambrian 545

Geological ranges of vertebrates


GEOLOGY **DATA SHEET**


A.M. WEDNESDAY, 25 May 2016

Name	Hardness (Mohs' Scale)	Typical Colour	Streak	Lustre	Cleavage (number of directions)
Quartz	7	colourless or white	scratches streak plate	glassy	none
Feldspar	6	white	scratches streak plate	pearly to glassy	2 good
Mica	21⁄2	silvery or brown	white	pearly to glassy	1 good
Halite	21/2	white	white	glassy	3 good
Calcite	3	white	white	glassy	3 good
Haematite	5½	black or red-brown	red-brown	metallic or dull	none
Galena	21⁄2	grey	grey	metallic	3 good
Garnet	7	red	white	glassy	none

Physical properties of minerals in hand specimen

Mohs' scale of hardness				
Mineral/ hardness		Common equivalent		
Diamond	10			
Corundum	9			
Topaz	8			
Quartz	7			
Orthoclase feldspar	6	← steel pin		
Apatite	5			
Fluorite	4			
Calcite	3	copper coin finger nail		
Gypsum	2			
Talc	1			

Period Ma ago sub-Era Cenozoic Era 222 Quaternary A Neogene Tertiary Palaeogene 65 mammals reptiles birds sharks and rays Cretaceous Mesozoic bony fishes amphibians 142 Jurassic 206 Triassic 248 Permian 290 Carboniferous 50 families 354 Palaeozoic Devonian 417 Silurian 443 Ordovician 495 Cambrian 545

Geological ranges of vertebrates