Surname

Centre Number

Other Names

GCSE

4250/01

S15-4250-01-R1

GEOLOGY Theory Paper (Paper version of on-screen assessment)

A.M. WEDNESDAY, 20 May 2015

1 hour 30 minutes

For Examiner's use only			
Section	Maximum Mark	Mark Awarded	
1.	9		
2.	19		
3.	15		
4.	10		
5.	21		
6.	18		
7.	8		
Total	100		

ADDITIONAL MATERIALS

In addition to this examination paper you will need a:

- Data Sheet;
- calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Answer all questions.

Write your answers in the spaces provided.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets alongside each question.

You are reminded that assessment will take into account the quality of written communication (*QWC*) used in your answers to **Section 3 Q4** and **Section 5 Q5**.

Examiner only

[2]

Answer **all** questions in each section.

Section 1 – answer questions 1-3

Figure 1 is a photograph of a river valley.

Figure 1

1. Which **two** of the following apply to this river and the valley? Tick (\checkmark) only **two** boxes.

2.	Erosion involves the transport of solid weathered material by water, wind, ice or line from each of the following descriptions to the correct geological term.	gravity. Draw a [4]	Examiner only
		traction	
	wearing down of a river bed by the impact of sediment being carried in the water	attrition	
	angular fragments at the foot of a steep slope	saltation	
	wearing down of grains due to collision with other grains carried by the wind	suspension	
	grains bouncing along a river bed	abrasion	
		scree	

Turn over.

Figure 2 is a photograph of a *sinkhole* – a large hole which suddenly appears in the ground. Sinkholes are an increasing problem in Britain where the bedrock is well jointed limestone.

Figure 2

Figure 3 shows how a *sinkhole* forms.

clay and soil suddenly collapse into a cavity in the well jointed limestone creating a sinkhole

Examiner only 3. Describe the weathering process which produces the cavity in the underlying well jointed [3]

4250 010005

(4250-01-R1)

	Section 2 – answer questions 1-11	Examiner only
1.	Which two of the following statements are incorrect ? Tick (\checkmark) only two boxes. [2	2]
	a bed is a layer of sedimentary rock more than 1 cm thick	
	strike is the compass bearing of a horizontal line on a bedding plane	
	angle of dip is the maximum angle of dip of a bedding plane from the vertical	
	if the strike direction is N–S the bed could be dipping west	
	if the direction of dip of a bed is NE then the strike is NE–SW	
	on a horizontal surface the outcrop of a bed is narrower if the angle of dip is steeper	

2. Which two of the following statements about the map are correct? Tick (/) only two boxes.[2]

the fold is an anticline	
fault f1 is a strike-slip fault	
the axial plane of the fold is dipping at 30°	
the fold limbs have different dip angles	
fault f2 is a dip-slip fault (normal/reverse/thrust)	
the axial plane trace has a NW–SE trend	
the fold is a syncline	

7

3.	Name the type of igneous body formed by rock A in Figure 4 . [1]	Examiner only
	sill	
	dyke	
	lava flow	
	volcanic central vent	
4.	List fault f1, fault f2 and rock A in Figure 4 in order of relative age in Table 1. [2]	
	youngest	
	oldest	
	Table 1	
5.	Name the most appropriate method to determine the relative ages of the faults and igneous rock A in Figure 4. Tick (\checkmark) only one box. [1]	
	cross cutting relationships	
	original horizontality	
	superposition of strata	
	lateral continuity	
	included fragments	

© WJEC CBAC Ltd.

(4250-01-R1)

Figure 5 is a photograph of a quarry face.

Examiner only

7.	Which two of the following statements about fault C are correct ? Tick	(✓) only two boxes. [2] Examiner only
	the fault plane is vertical		
	the downthrow side is to the south		
	the amount of displacement along the fault is less than fault ${\mbox{\bf B}}$		
	the fault plane dips to the north		
	the foot wall is to the south		
	the downthrow side is to the north		
	the fault plane is dipping at a lower angle than the bedding		
8.	Selecting from the choice below, draw an arrow in each of the empty b the directions of tectonic stress affecting fault B .	ooxes in Figure 5 to sho [9W 1]
	←		

Examiner only

Figure 6 is a student's field sketch of an igneous body in an exposure just off the map in Figure 4.

11

The student incorrectly identified the igneous body as a sill. Give two pieces of evidence from Figure 6 which suggest that it is not a sill. [2]

Examiner only Figure 7 is a microscope view of the rock forming the igneous body in Figure 6. dark green mineral in hand specimen (olivine) mineral is almost feldspar black in hand specimen (augite) 0 0.1 mm L ----_

		Figure 7		
10.	Which two of the following statement boxes.	s about the rock in Figure 7 are correct ? Tick (✔) only	y two [2]	
	the rock is gabbro			
	the crystals show alignment			
	the rock is basalt			
	the rock is poorly sorted			
	the crystal size is fine			
	the crystal size is coarse			
11.	Explain why the crystal size varies in	igneous rocks.	[3]	
				1 '

Section 3 – answer questions 1-8

13

Figure 8 is a photograph of an exposure of rock and an enlargement to show the texture of rock **D**. Bed **E** is the location of a sedimentary structure shown in **Figure 9**.

1. Describe the texture of rock **D**. Tick (\mathcal{I}) only **two** boxes.

[2]

Examiner only Name rock **D**. Tick (*J*) only **one** box. 2. [1] sandstone conglomerate shale limestone breccia Figure 9 shows a sedimentary structure found in bed E of the rock exposure in Figure 8. 10 0 I cm

.....

.....

Turn over.

limestone

coal

7. Using evidence from the rock and both fossils, describe the most likely environment in which rock F was deposited.
 [3]

Turn over.

Figure 11 shows the time ranges of three fossil graptolites (K, L and M) which were collected from one bedding plane of shale rock.

During which time zone (1 - 5) was the shale deposited? Tick (\checkmark) only **one** box. 8.

15

[1]

Examiner only

BLANK PAGE

19

Turn over.

 Section 4 - answer question 1-5
 [2]

 1. Draw a line from each of the following events to the correct geological time.
 [2]

 Lower Palaeozoic
 [2]

 opening of the north Atlantic
 Carboniferous

 Caledonian orogeny
 Mesozoic

 Cenozoic
 Pleistocene

An exposure of slate can be used as part of the evidence for ancient convergent (destructive) plate margins. Which one of the following does not provide evidence for plate collision during the Caledonian orogeny? Tick (✓) only one box. [1]

granite intrusion	
turbidites	
thrust faulting	
NE–SW folding	
extrusion of flood basalts	

Examiner only

5. The natural landscape can be modified by the extraction of large volumes of material such as slate which is used in the construction industry. Disused quarries and pits are often adapted for leisure purposes or tourism. Describe one other way that this land could be used once extraction has finished.
[3]

Examiner only

(4250-01-R1)

2.	Locations R and S in Figure 13 are 800 km apart on the ocean floor. How fast are R and S spreading apart from each other? Show your calculation below. Tick (<i>J</i>) only one box. [2]	iner ly
	Calculation	
	10 cm per year	
	32 mm per year	
	100 cm per year	
	10 mm per year	
	20 cm per year	
3.	Which two of the following are associated with mid-ocean ridges? Tick (\checkmark) only two boxes. [2]	
	basalt pillow lavas	
	thrust faults	
	andesitic lava	

high heat flow

deep focus earthquakes

regional metamorphism

4.	Name the main feature that is found along the centre of mid-ocean ridges. Tick (✓) only one box.	Examiner only
	ocean trench	
	island arc	
	mountain chain	
	rift valley	
	oceanic plateau	
5.	Explain how the magnetic stripes in Figure 13 have formed. QWC [4]	

only Figure 14 is a map showing the plate boundaries around Japan and the epicentre of a magnitude 9.0 earthquake which generated a large tsunami in 2011. Key **EURASIAN** PLATE Japan Japan _{trench} earthquake epicentre ß subduction zone PACIFIC PLATE Nankai trough PHILIPPINE PLATE 200 n km

6. Selecting from the choice below, draw an arrow in each of the empty boxes in Figure 14 to show the direction of plate movement at those locations. [1]

Examiner

(4250-01-R1)

Figure 15 is a record of changes in sea level from two recording stations (**T** and **V**) in the Pacific Ocean near the earthquake shown in **Figure 14**. The earthquake took place at 05.45 on March 11th 2011.

Turn over.

© WJEC CBAC Ltd.

(4250-01-R1)

9.	Over 15,000 people were killed and more than 127,000 buildings collapsed as a result of the earthquake and tsunami. Three nuclear reactors were damaged. Which two of the following are disadvantages of using nuclear energy? Tick (✓) only two boxes. [2]		
	suitable geological sites for disposing of radioactive waste are difficult to find		
	nuclear energy is renewable		
	nuclear energy adds to the greenhouse effect		
	nuclear energy depletes the reserves of fossil fuels		
	reserves of uranium are very low		
	leakage of radioactive material		
	the production of energy is not continuous		
10.	Describe two methods that could have been used to reduce the risk from the tsunami and earthquake, taking into account how close the earthquake was to the coast of Japan. [4]		
	1		
	2.		
		21	

BLANK PAGE

Examiner only

Section 6 – answer questions 1-9

30

Figure 16 is a photograph of an exceptionally preserved specimen of *Archaeopteryx* and a short description.

Key 1 flight feathers

- 2 bony tail
- 3 three-fingered hand with claws
- 4 teeth in jaw of the skull
- 5 three forward toes, one behind
- 6 hollow bones

Archaeopteryx lived approximately 150 million years ago. Archaeopteryx had small teeth and a long bony tail; features which Archaeopteryx shared with other dinosaurs of the time. Archaeopteryx also had a number of bird features such as hollow bones, flight feathers, wings, and a partially reversed first toe. Because it displays a number of features common to both birds and dinosaurs, Archaeopteryx has often been considered a link between them. It is argued that birds evolved from dinosaurs and Archaeopteryx was a critical piece of evidence for this argument.

Figure 16

1.	Which one of the following statements about Archa	aeopteryx is correc	t ? Tick (✔) only one box. [1]	Examiner only
	Archaeopteryx is evidence for mass extinction	on		
	two features of <i>Archaeopteryx</i> in common w hollow bones and a long bony tail	rith birds are		
	Archaeopteryx is evidence for the theory of	evolution		
	two features that <i>Archaeopteryx</i> shared with teeth and a partially reversed first toe	i dinosaurs are		
2.	Describe the possible conditions which led to the e	exceptional preserva	ation of <i>Archaeopteryx.</i> [2]	
3.	Use the Data Sheet . Draw a line from each of the the correct geological time.	three descriptions	of vertebrate evolution to [3]	
		Cretaceous-Tertia	ary (K/T) boundary	
	reptile, fish and amphibian families were reduced in numbers	Ordovician		
	bird and mammal families expanded rapidly but reptiles declined	Devonian		
	first amphibians appeared but declined at the end of the period	Permo-Triassic bo	oundary	
		Jurassic-Cretace	ous boundary	

4.	Which two of the following statements are incorrect ? Tick only two (<i>J</i>) boxes.	[2]	xaminer only
	trace fossils provide evidence of activities of ancient organisms		
	trace fossils are preserved in high energy conditions because low energy conditions would destroy them		
	trace fossils are much rarer in terrestrial environments due to erosion		
	trace fossils suggest some dinosaurs ran on two legs on land at speed		
	dinosaur tracks have been found in Tertiary sandstones		
	the impression of an ammonite shell in mudstone is not a trace fossil		
	animal burrows in sandstones suggest shallow water		

Examiner only Figure 17 shows the abundance of the chemical element iridium above and below a clay layer found at the K/T boundary in Italy. Centimetres above/below K/T boundary 20 Tertiary rocks 10 clay layer 0 หมมั้มม Cretaceous rocks 10 2 4 6 8 10 0 Iridium abundance in parts per billion Figure 17 5. Which one of the following statements about Figure 17 and the clay is correct? Tick (\checkmark) only **one** box. [1] the abundance of iridium rises gradually in the clay layer 4 cm below the clay layer the abundance of iridium is virtually zero 4 cm above the clay layer the abundance of iridium is approximately 2 parts per billion the abundance of iridium reaches a peak of 9 parts per million in the clay layer the relative age of the clay layer is 65 million years

(4250-01-R1)

	Section 7 – answer questions 1-5		Examiner only
1.	State why geothermal energy is the main source of energy in Iceland. Tick (\mathcal{I}) only one box.	[1]	
	there is no wind or hydroelectric energy available		
	warm oceanic water has heated the land		
	the area is volcanic so groundwater has a high temperature		
	global warming has increased global temperature in high latitudes		
	Iceland is on a destructive plate margin		

Figure 20 is a photograph of a hydroelectric power plant at the foot of a dam.

Figure 20

Examiner only Which one of the following statements about the generation of hydroelectric power is correct? 2. Tick (\mathcal{I}) only **one** box. [1] it increases carbon emissions it can be used in every part of the world it can increase the albedo effect it is a renewable source of energy it pollutes groundwater Which one of the following conditions is not suitable for the site of a reservoir and dam? 3. Tick (\checkmark) only **one** box. [1] the rock underlying the reservoir is impermeable

the rock forming the foundations of the dam is a well cemented limestone	
dip of the beds below the dam and reservoir is horizontal	

a lack of seismic activity in the area of the dam and reservoir

the rock beneath the dam is faulted

Examiner only

38

Figure 21 is a geological map showing the Dol-y-Gaer reservoir and dam site in south Wales.

BLANK PAGE

GEOLOGY **DATA SHEET**

A.M. WEDNESDAY, 20 May 2015

Name	Hardness (Mohs' Scale)	Typical Colour	Streak	Lustre	Cleavage (number of directions)
Quartz	7	colourless or white	scratches streak plate	glassy	none
Feldspar	6	white	scratches streak plate	pearly to glassy	2 good
Mica	21⁄2	silvery or brown	white	pearly to glassy	1 good
Halite	21⁄2	white	white	glassy	3 good
Calcite	3	white	white	glassy	3 good
Haematite	5½	black or red-brown	red-brown	metallic or dull	none
Galena	21/2	grey	grey	metallic	3 good
Garnet	7	red	white	glassy	none

Physical properties of minerals in hand specimen

Mohs' scale of hardness			
Mineral/ hardness		Common equivalent	
Diamond	10		
Corundum	9		
Topaz	8		
Quartz	7		
Orthoclase feldspar	6	← steel pin	
Apatite	5		
Fluorite	4		
Calcite	3	copper coin	
Gypsum	2	Tinger nall	
Talc	1		

Period Ma ago sub-Era Cenozoic Era 222 Quaternary A Neogene Tertiary Palaeogene 65 mammals reptiles birds sharks and rays Cretaceous Mesozoic bony fishes amphibians 142 Jurassic 206 Triassic 248 Permian 290 Carboniferous 50 families 354 Palaeozoic Devonian 417 Silurian 443 Ordovician 495 Cambrian 545

Geological ranges of vertebrates