Surname

Other Names

Centre Number

0

Candidate Number

GCSE

4250/01

GEOLOGY Theory Paper (Paper version of on-screen assessment)

A.M. WEDNESDAY, 21 May 2014

1 hour 30 minutes

For Examiner's use only		
Section	Maximum Mark	Mark Awarded
1.	12	
2.	17	
3.	21	
4.	12	
5.	7	
6.	19	
7.	12	
Total	100	

ADDITIONAL MATERIALS

In addition to this examination paper you will need a:

- Data Sheet;
- calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Answer **all** questions. Write your answers in the spaces provided.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets alongside each question.

You are reminded that assessment will take into account the quality of written communication (QWC) used in your answers to **Section 2 Q14** and **Section 3 Q10**.

<section-header><section-header>

2

[1]

1. Name the structure shown by the line A-B. Tick (J) only **one** box.

fault
angular unconformity
horizontal bedding plane
axial plane trace of a fold
metamorphic aureole

© WJEC CBAC Ltd. (42

2. Arrange the events below in the order they occurred to form the structure marked **A–B**. Write them in their correct positions in **Table 1**.

erosion of rock ${\boldsymbol{\mathsf{D}}}$

deposition of rock **D**

deposition of rock \boldsymbol{C}

uplift and tilting

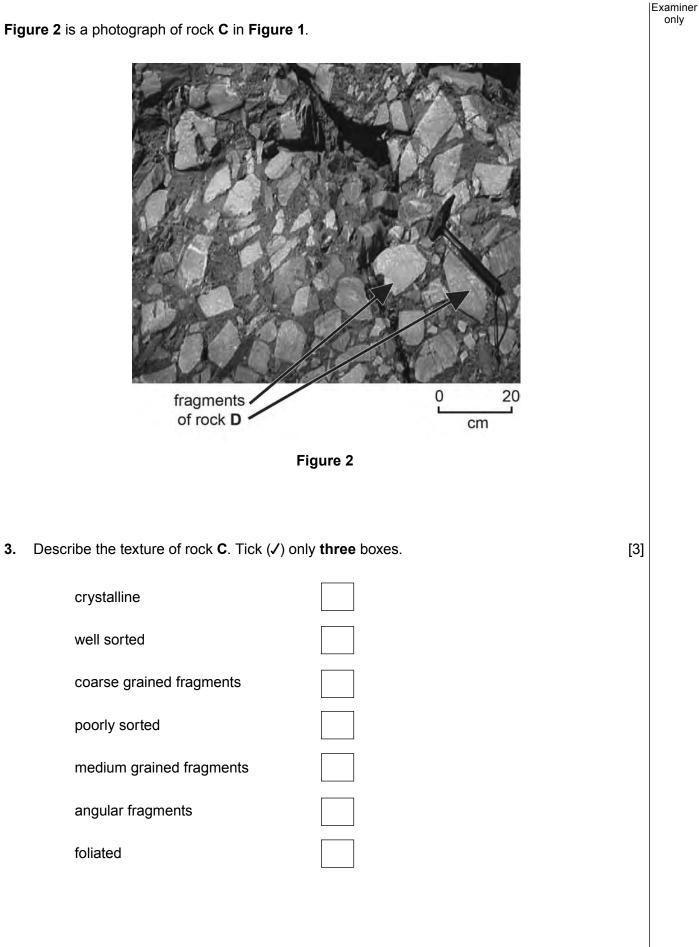


Table 1

Examiner only

[2]

Turn over.

	5		
4.	Name rock C . Tick (✓) only one box.	[1]	Examiner only
	conglomerate		
	sandstone		
	shale		
	limestone		
	breccia		
5.	Explain one feature of the texture of rock C which suggests that the fragments wer transported very far before deposition.	re not [2]	
			4250 010005
6.	Describe one type of physical weathering which could have produced the fragments of r in upland areas in present day northern Europe.	rock D [3]	
			12

Section 2 – answer questions 7-14

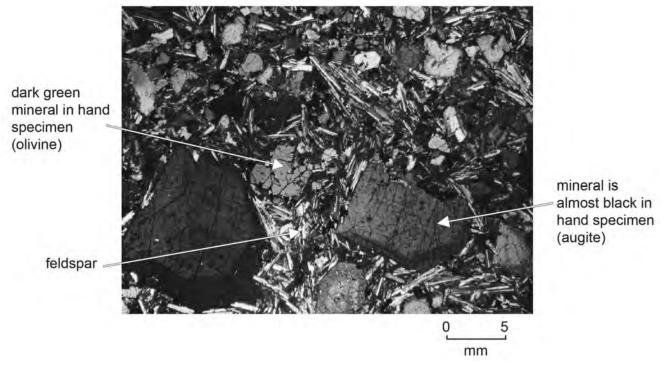



Figure 3 is a geological map of part of north Pembrokeshire.

Figure 3

Figure 4 is a microscopic view of the rock forming the igneous intrusion shown in Figure 3.

Which of the following statements about the rock in Figure 4 are correct? Tick (✓) only two boxes.

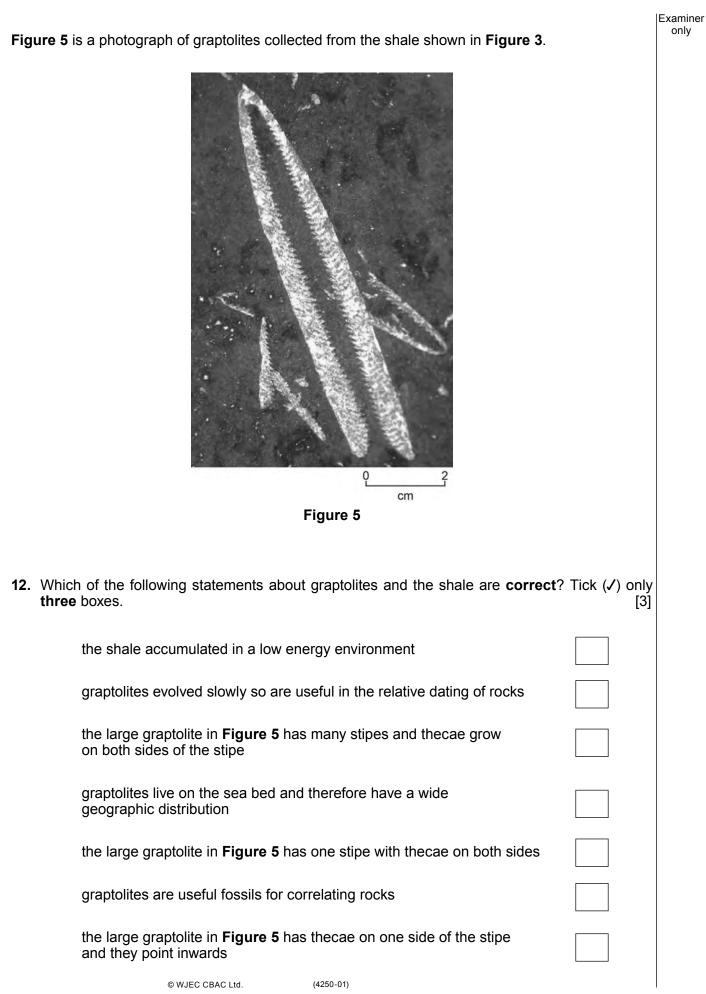
the rock is granite	
the texture suggests two stages of cooling	
the texture is poorly sorted	
the rock is basalt	
the texture suggests slow cooling at the surface	
the rock is gabbro	

7

Turn over.

8.	The igneous intrusion in Figure 3 has been dated radiometrically to be 450 million years old. State the age of the shale in Figure 3 . Tick (✓) only one box. [1]	Examiner only
	younger than 450 million years	
	450 million years old	
	older than 450 million years	
	40.5 million years old	
	Carboniferous	
9.	For radiometric dating, state the minimum information you need to calculate the age of a mineral (and therefore the rock that the mineral comes from). Tick (✓) only two boxes. [2] half-life of the parent isotope to the state parent isotope at the start of radioactive decay total amount of the unstable parent isotope at the start of radioactive decay ratio of the parent isotope to the daughter isotope	
	percentage of the mineral present in the rock	

A mineral in an igneous rock contains 40 % of the unstable parent isotope. State the number of half-lives that have elapsed since the mineral crystallised. Tick (✓) only one box. [1]

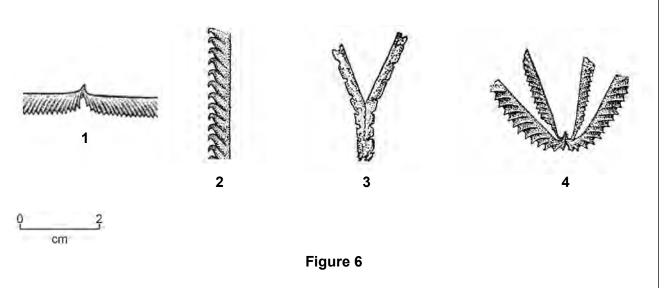

less than one	
one	
between 1 and 2	
two	
between 2 and 3	
more than three	

11. The igneous intrusion in **Figure 3** has been identified as a large **sill**. Suggest **two** pieces of evidence for identifying the igneous intrusion as a large **sill** rather than a pluton. [2]

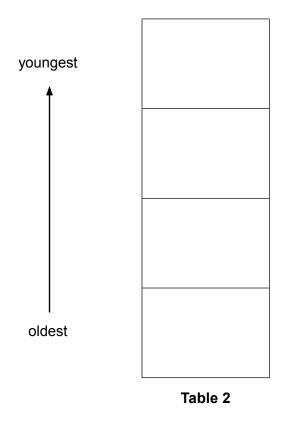
2	1	
2		
2		
	•••••	
	2	
	 .	
	•••••	

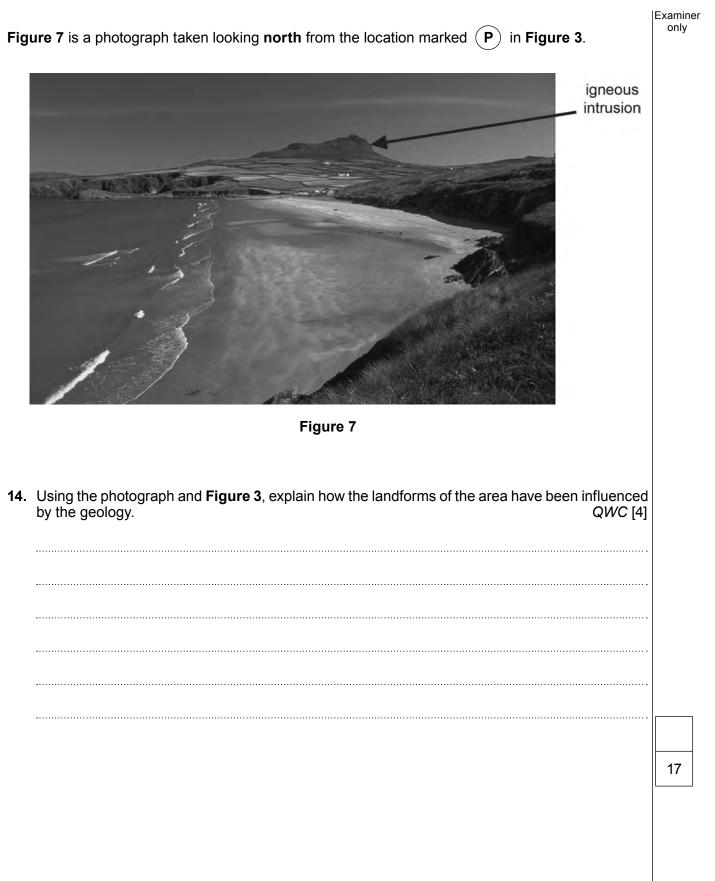
4250 010009

Examiner only



Examiner only


> 4250 010011


Figure 6 shows sketches of four different graptolites found in rocks of different ages from the Lower Palaeozoic.

11

Place the graptolites in their correct order of age in Table 2. You may sketch the graptolites in the appropriate boxes in Table 2 or use the numbers 1, 2, 3 and 4 to represent them. [2]

BLANK PAGE

13

Turn over.

Examiner only

Section 3 – answer questions 1-10

Figure 8 is a map showing the geological features of the South American and Nazca plate boundaries.

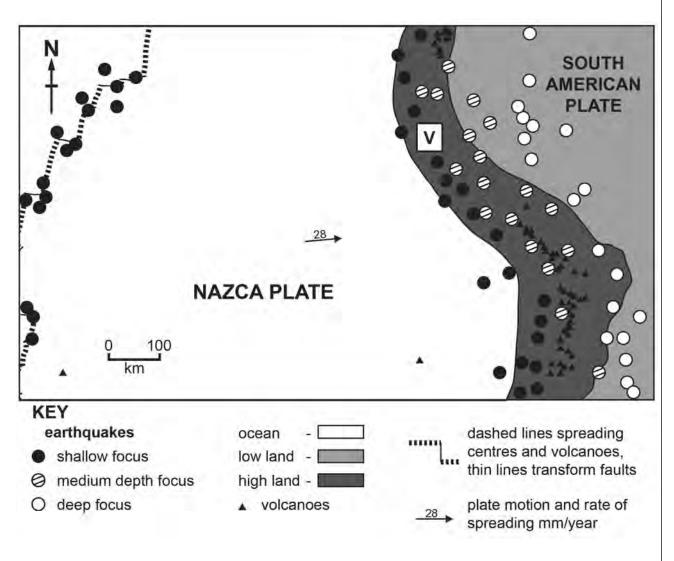


Figure 8

1.	State which of the following geological features are present at the western boundary of the Nazca Plate . Tick (\mathcal{I}) only two boxes.	e Examiner only 2]
	ocean ridge	
	deep, medium depth and shallow focus earthquakes	
	displacement by thrust faults	
	mainly andesitic volcanic activity	
	volcanic island arc	
	shallow focus earthquakes only	
2.	Name the type of plate boundary formed by the western boundary of the Nazca Plate . Tick (✔) only one box.	1]
	convergent (destructive) oceanic-oceanic	4250
	convergent (destructive) oceanic-continental	4
	divergent (constructive)	
	conservative	
	convergent (destructive) continental	
3.	State which of the following geological features are present along the boundary between th Nazca Plate and the South American Plate . Tick (✓) only two boxes.	e 2]
	ocean ridge	
	deep, medium depth and shallow focus earthquakes	
	coastal mountain chain	
	mainly basaltic volcanic activity	
	volcanic island arc	

Turn over.

4.	Name the type of plate boundary formed between the Nazca Plate and the South American [1]
	convergent (destructive) oceanic-oceanic
	convergent (destructive) oceanic-continental
	divergent (constructive)
	conservative
	convergent (destructive) continental
5.	Describe and explain the pattern of earthquake foci along the plate boundary between the Nazca Plate and the South American Plate . [3]

Examiner only

6. Letters E–H on Figure 9 represent locations across the Mid-Atlantic ridge. Draw a line from each letter to the most appropriate description of that location. [4]

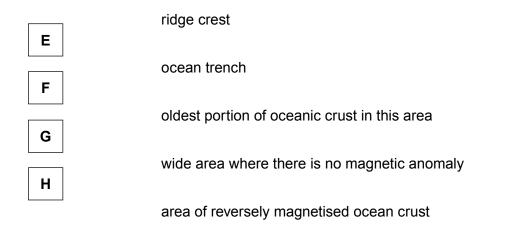


Figure 9 shows the results of a magnetic survey measured at right angles across the Mid-Atlantic ridge.

Turn over.

7.	State which of the following may contribute to plate m	novement. Tick (/) only two boxes.	[2]	Examiner only
	cold rigid continental lithosphere			
	magnetic stripes			
	low heat flow at the ocean ridge			
	thermal convection in the mantle			
	transform faults			
	weak partially molten asthenosphere			

BLANK PAGE

19

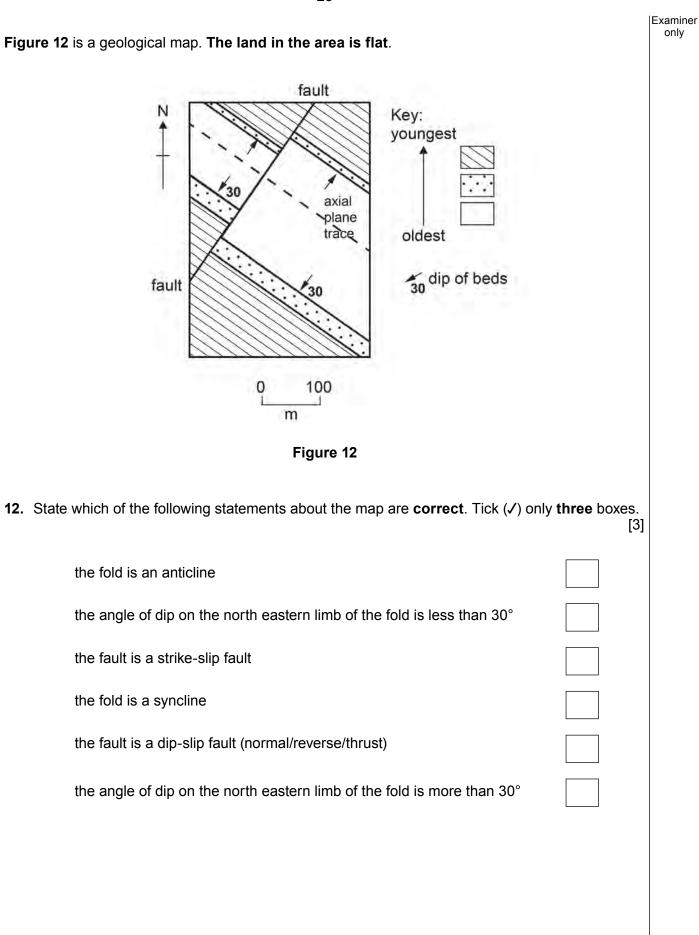
Turn over.

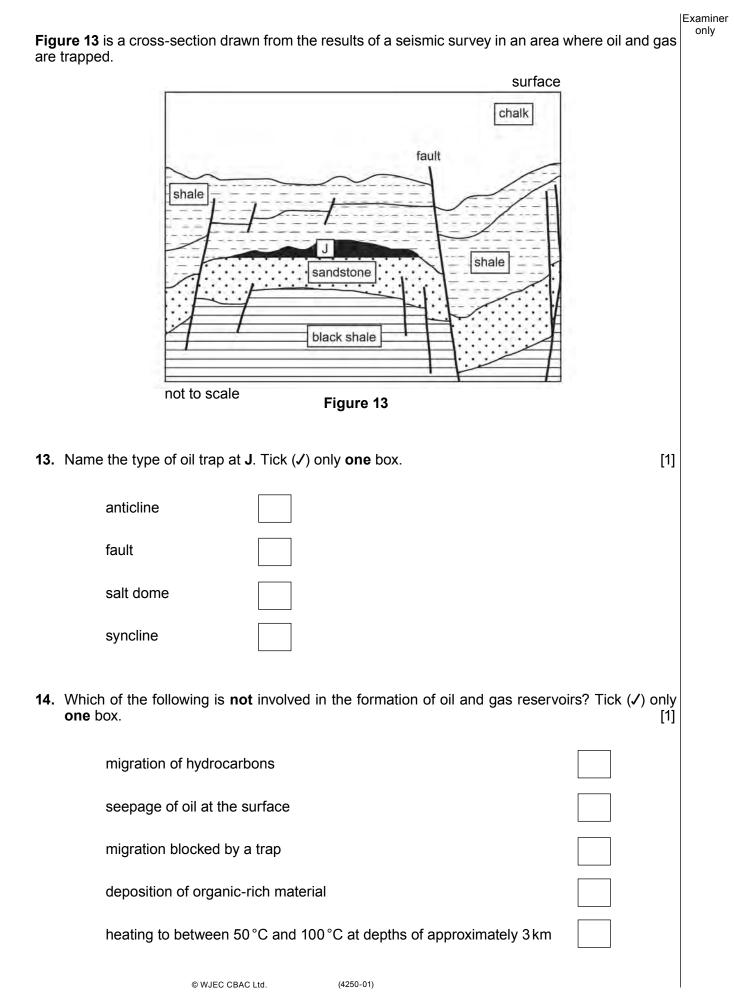
Examiner only

The letter **V** on **Figure 8** marks the site of the Nevado del Ruiz volcano which erupted in 1985 producing an enormous volcanic mudflow (lahar). The lahar caused an estimated 25,000 deaths and buried much of the town of Armero as shown in **Figure 10**.

Figure 10

 State why volcanic mudflows (lahars) created by explosive volcanoes are particularly destructive. Tick (✓) only one box. [1]

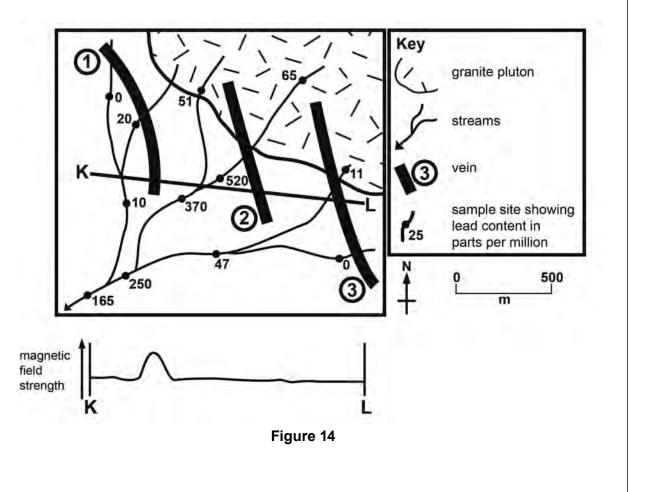

	they are landslides	
	they flow on top of a cushion of hot air and gas	
	they gain energy as eruptions eject material out of the volcanic vent	
	they form when an entire volcano collapses	
	they are a dense mass of water and ash that flow down slopes at high speed	
9.	State which of the following does not cause a volcanic mudflow (lahar). Tick (\checkmark) only c	o ne box. [1]
	melting of snow by an eruption on a volcano summit	
	flow of lava into the ocean	
	pyroclastic flow enters a river	
	heavy rainfall during eruption of volcanic ash	
	collapse of a crater lake combining with ash	
	© WJEC CBAC Ltd. (4250-01)	


10. The disaster at Armero could have been avoided as geologists had predicted that there was '100 percent probability of volcanic mudflows (lahars) ... with great danger for Armero.'
 Examiner only

 Describe two methods which could have been used to help predict this volcanic eruption and so minimise the effects of the disaster.
 QWC [4]

Examiner only Section 4 – answer questions 11-17 Figure 11 is a photograph of part of a cliff section. South North m Figure 11 **11.** State which of the following statements about the folds are **correct**. Tick (\checkmark) only **two** boxes. [2] the folding is caused by tensional stress the strike of the folds is N-S fold limbs dip at different angles the strike of the folds is E-W the axial planes of the folds dip to the south fold limbs have similar dip angles

© WJEC CBAC Ltd.


15.	State which of the following would prove the presence of oil underground. Tick (/) only one box. [1]	Examiner only
	geophysical survey showing presence of salt domes	
	seismic survey showing presence of a structural trap	
	oil in the drilling mud	
	gas in the drilling mud	
	geological mapping showing presence of a fault at the surface	
16.	State which of the following does not cause damage to the environment as a result of oil and gas extraction and use. Tick (\checkmark) only one box. [1]	
	seismic exploration for oil and gas	
	presence of oil platforms and drilling rigs	
	burning oil and gas in cars and power stations	
	geological mapping	
	leakage of oil during drilling and transport	
17.	Explain why depleted oil and gas fields are suitable for the storage of carbon dioxide produced by power stations. [3]	
		12

Examiner only

Section 5 – answer questions 1-5

26

Figure 14 is a map showing the results of a geochemical analysis of river sediment near a granite pluton intruded by mineral veins. Shown below the map are the results of a magnetic survey along the line **K–L**.

1. State which of the mineral veins (1, 2 or 3) contains a possible lead ore deposit.

[1]

mineral vein

2. Name the mineral which is the ore of lead. Tick (\mathcal{I}) only **one** box.

golddiamondhaematitegalenahalite

3.	State the most likely origin of the mineral containing lead. Tick (\checkmark) only one box. [1]	Examiner only
	metamorphic recrystallisation in the metamorphic aureole	
	crystallisation from an evaporating solution	
	crystallisation of granite magma	
	crystallisation from hydrothermal fluids	
	crystallisation as a cement in pore waters	
4.	Give one explanation for the results of the magnetic survey along the line K–L shown in Figure 14.	
5.	Describe one environmental problem caused by the mining of metallic mineral ores. [2]	
		7

Figure 15 is a sedimentary log of Upper Palaeozoic rocks sketched by a student.

28

Section 6 – answer questions 6-16

Examiner only

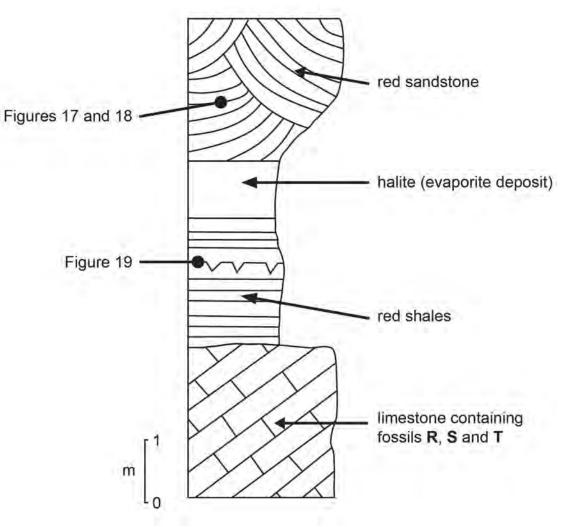
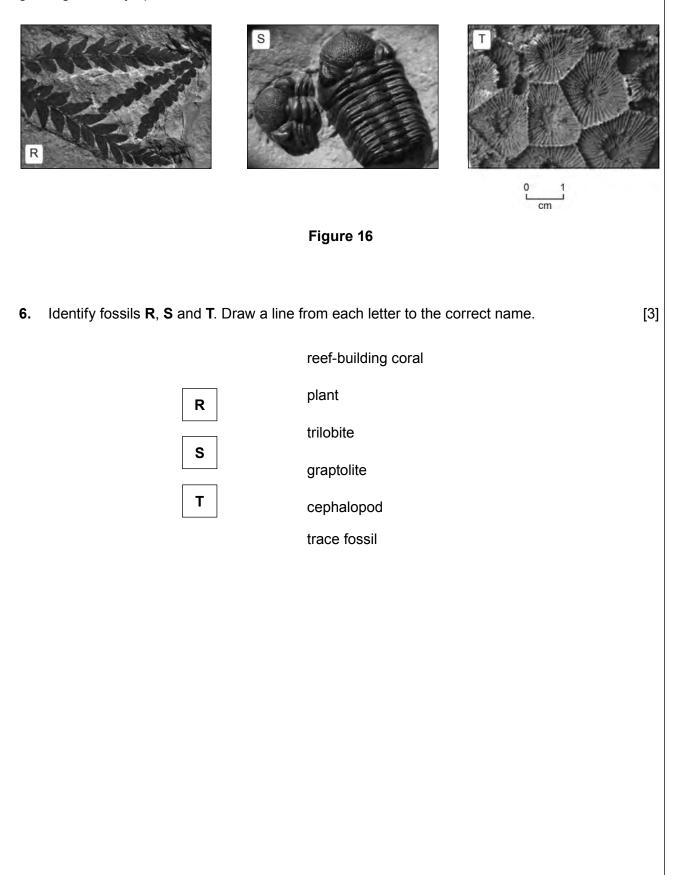



Figure 15

Figure 16 shows fossils **R**, **S** and **T** found within the limestone in Figure 15. Fossil **T** was found growing vertically upwards in the limestone.

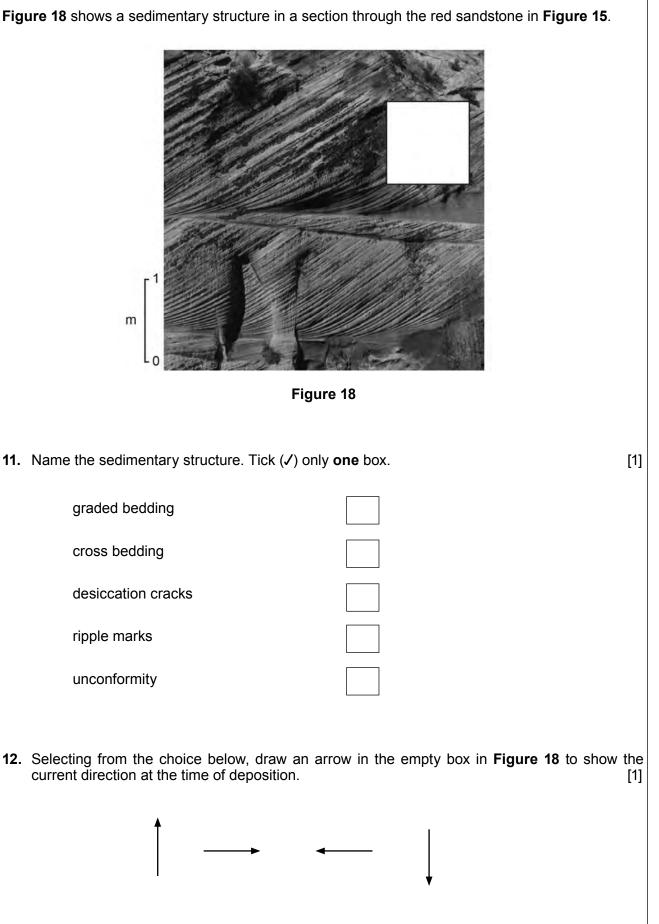
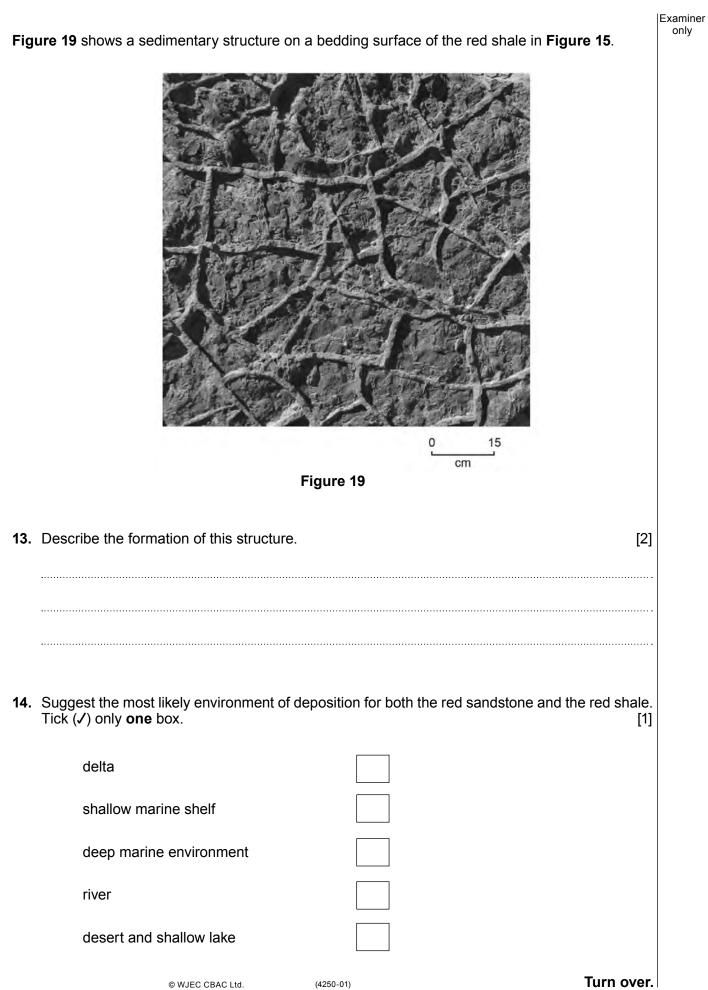
Examiner only

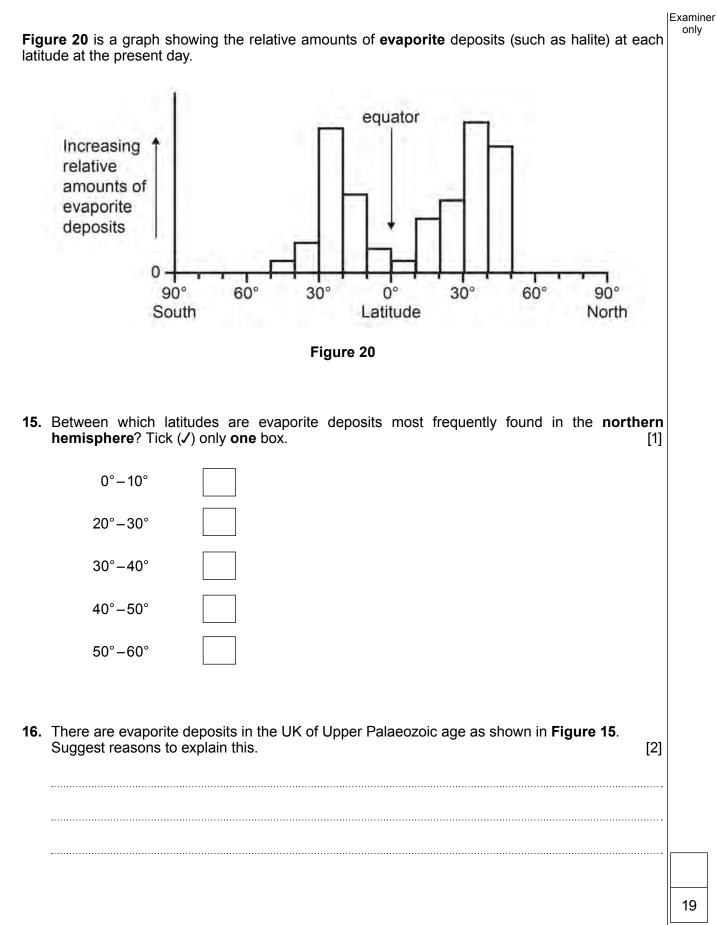
Examiner only Describe the mode of life of fossils R, S and T. Draw a line from each letter to the correct 7. description. [3] crawled around on land R lived as a colony fixed to the sea bed swam in fresh water S not mobile and lived on land Т crawled around on the sea bed State the likely environment for the fossil assemblage (R, S and T) found in the limestone. 8. Tick (\checkmark) only **one** box. [1] delta shallow marine shelf deep marine environment river desert and shallow lake Explain how all the different fossils in this assemblage were preserved in the same bed of 9. limestone. [2] _____

Examiner only

$$\begin{split} \tilde{l} = \frac{1}{m} \\ \tilde{l$$

10. Describe the texture of the red sandstone. Tick (\checkmark) only **two** boxes.


Figure 17 is a microscopic view of the red sandstone in Figure 15.

[2]

Examiner only

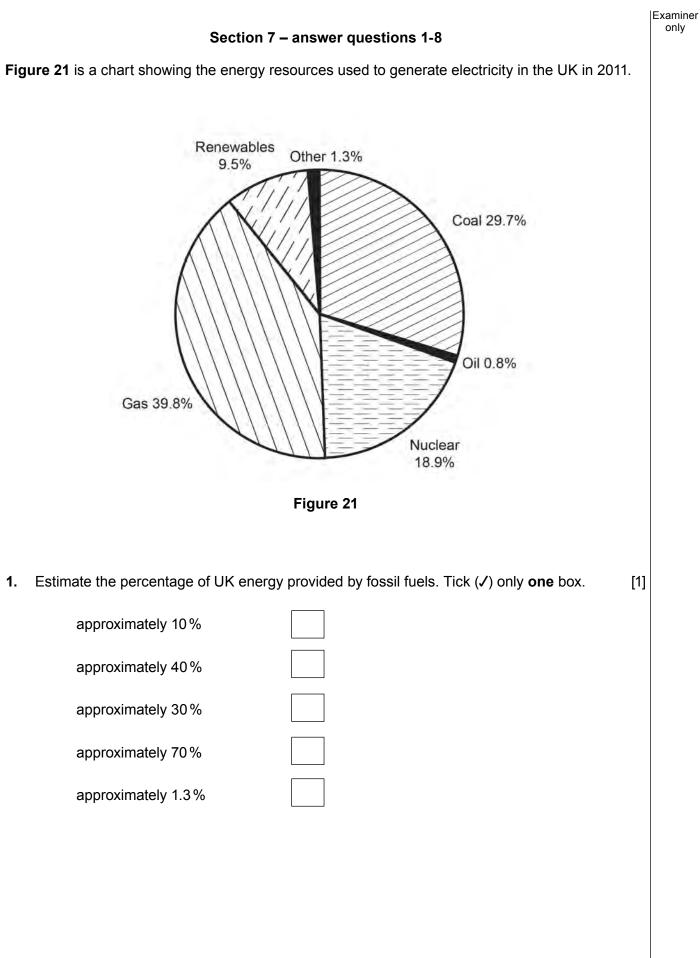
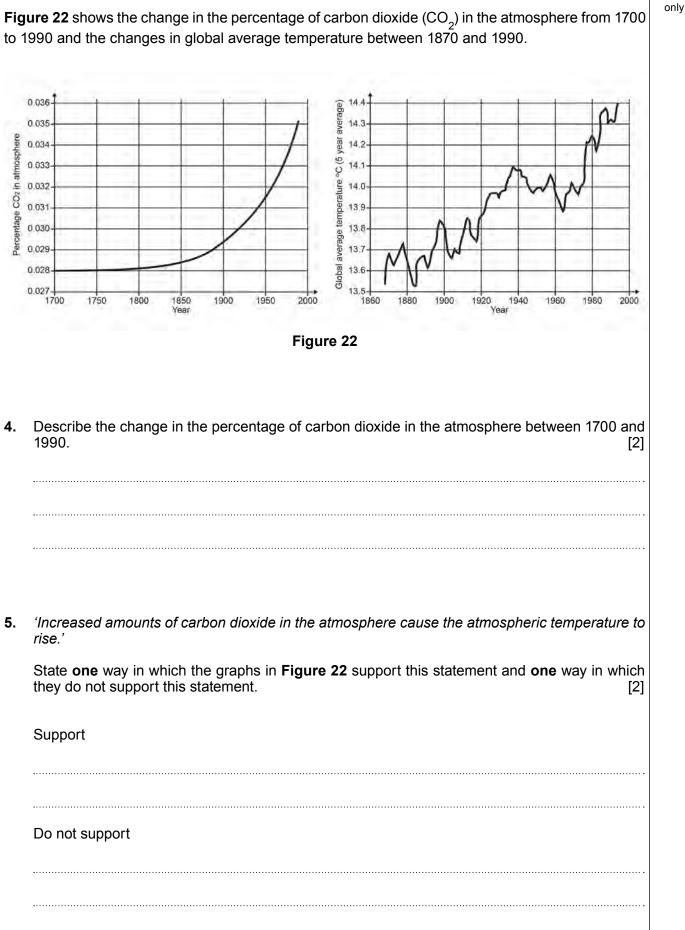



Table 3 shows the amount of carbon dioxide (CO_2) released from volcanoes compared to that produced by humans.

Main carbon dioxide (CO ₂) producers	Billion metric tons per year (Gt/y)	
global volcanic emissions in 2010	0.35	
produced by humans in 2010	35.0	
Carbon dioxide (CO ₂) produced by volcanic events		
Mount St Helens, 18 May 1980	0.01	
Mount Pinatubo, 15 June 1991	0.05	
Table 3		
Which of the following statements is false ? Tick (/) of	only one box. [
the amount of CO ₂ produced globally by volca was less than that produced by humans	noes in 2010	
humans produced 100 times more CO ₂ than volcanoes in 2010		
it would take 3500 volcanic eruptions of Mount St Helens to equal the human production of CO ₂ in 2010		
it would take 7 volcanic eruptions of Mount Pinatubo to equal the human production of CO ₂ in 2010		
the largest volcanic eruptions produced much humans did in 2010	less CO ₂ than	
The amount of carbon dioxide in the atmosphere ca which of the following rock cycle processes does no the atmosphere. Tick (✓) only one box.		
formation and burial of fossil shells		
deposition of organic shales		
deposition of limestones		
deposition of coal		
metamorphism of limestone		
© WJEC CBAC Ltd. (4250-01)		

Examiner only

Turn over.

Examiner

|Examiner only Figure 23 shows one of the effects of an increasing atmospheric temperature. melting of the ice cap increase in reduction in size atmospheric of the ice cap temperature Figure 23 Select the most suitable process to complete the feedback mechanism shown in Figure 23. 6. Tick (\checkmark) only **one** box. [1] increased albedo greenhouse effect lowering of sea level decreased albedo increase in carbon dioxide in the atmosphere 7. State which of the following is **not** a potential effect of an increasing atmospheric temperature. Tick (\checkmark) only **one** box. [1] melting of polar ice caps more extreme weather sea level rise an increase in volcanic activity

38

© WJEC CBAC Ltd.

disruption of ocean currents

8. Explain the meaning of the phrase 'enhanced greenhouse effect'. [3]

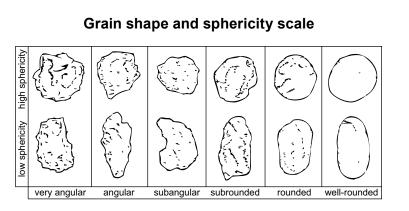
12

39

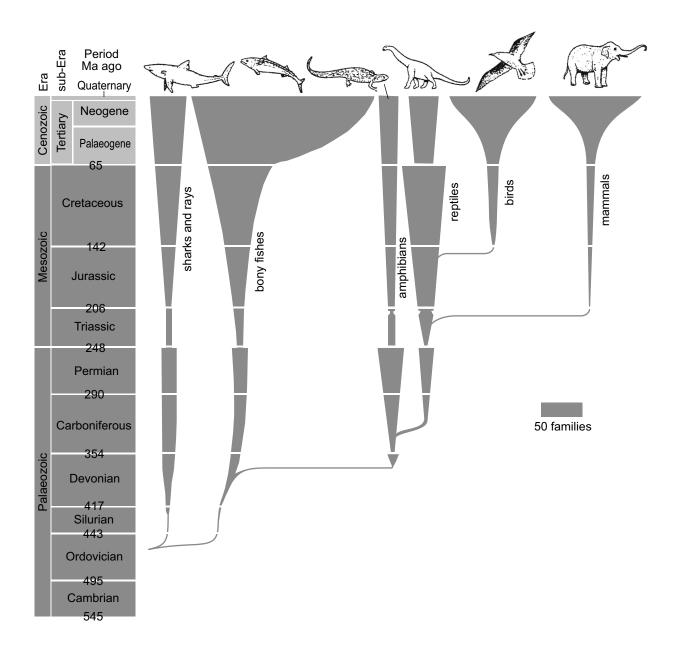
END OF PAPER

GCSE

GEOLOGY **DATA SHEET**


A.M. WEDNESDAY, 21 May 2014

Name	Hardness (Mohs' Scale)	Typical Colour	Streak	Lustre	Cleavage (number of directions)
Quartz	7	colourless or white	scratches streak plate	glassy	none
Feldspar	6	white	scratches streak plate	pearly to glassy	2 good
Mica	21⁄2	silvery or brown	white	pearly to glassy	1 good
Halite	21⁄2	white	white	glassy	3 good
Calcite	3	white	white	glassy	3 good
Haematite	5½	black or red-brown	red-brown	metallic or dull	none
Galena	21⁄2	grey	grey	metallic	3 good
Garnet	7	red	white	glassy	none


Physical properties of minerals in hand specimen

Mohs' scale of hardness					
Mineral/ hardness		Common equivalent			
Diamond	10				
Corundum	9				
Topaz	8				
Quartz	7				
Orthoclase feldspar	6	← steel pin			
Apatite	5				
Fluorite	4				
Calcite	3	copper coin			
Gypsum	2	finger nail			
Talc	1				

Grain size scale

Geological ranges of vertebrates

