$\frac{\text { WJEC }}{\text { CBAC }}$

GCSE MARKING SCHEME

SUMMER 2012

GEOLOGY

2012				
Section	Question	Answer	Mark	Total
	1	the apparent dip direction is west	1	
		dip angle is less than 45°	1	
		downthrow side is on the east	1	
	2	thrust	1	
	3	compression	1	
	4	garnet	1	
	5	foliated	1	
		crystalline	1	
	6	schist	1	
	7	oldest rock on the upthrow side of the fault (1)		
		metamorphosed before the unmetamorphosed sediments deposited (2)		
		rocks on top folded before non-folded rocks formed (2)	3	12
	8	raised beach	1	
	9	submerged forest	1	
	10	Figure 4		
		trees/peat formed on land		
		submerged forest/peat/soil now on beach		
		eustatic sea level rise		
		fall in sea level in the past		
		Figure 3		
		pebbles/shells/cliff formed at sea level		
		pebbles/shells/cliff now above sea level		
-		sea level higher in the past		
		sea level gone down or isostatic rise of land	3	
	11	increasing	1	
	12	volcanic gases		
		burning of coal and oil	2	
	13	increase in CO_{2}		
		leading to increase in temperature of atmosphere		
		melting of ice sheets		
		sea level increases or expansion of sea water	4	12
	1	movement of the San Andreas fault/grinding of plates	1	
	2	reference to size of earthquake measured on Richter scale - from article (2)		
		Mercalli scale with reference to building damage (2)		
		seismometer plus description of how it is measured (2)	2	
	3	B divergent		
		C convergent destructive ocean-continent		
		D conservative	3	
	4	correct direction of arrows	1	
3	5	subduction of the ocean plate		
V		under the continental plate		
		friction between plates/stick-release	3	
	6	vulcanicity and shallow focus earthquakes		
		high heat flow	2	
	7	andesite	1	
		basalt	1	
		granite	1	
		slate	1	16
4	8	the rate of drift was more rapid between 450Ma and 250Ma		
		the rate of drift slowed during the Mesozoic and Tertiary	2	
	9	Carboniferous	1	
	10	mass extinction	1	
	11	radial symmetry		
		many individuals in a colony	2	
	12	uniformitarianism	1	
	13	warm	1	
		normal	1	
		shallow	1	
		tropical and semitropical	1	
	14	plant fossils		
		high in carbon		
		equatorial/warm		
		anaerobic to prevent decay		
		subsidence		
		swamp/peat		
		terrestrial		
		river flood plain		
		deltaic any 4 points	4	15

	1	syncline	1	
	2	access to the Marl on land		
		structure takes the tunnel deeper under the sea in the middle	2	
	3	soft rock		
		impermeable	2	
	4	seismic easier over the sea		
		seismic investigates structure		
5		boreholes expensive over the sea/cheaper on land		
\bigcirc		boreholes needed to sample rock types any 3 points	3	
	5	constant thickness of the Marl	1	
	6	pollution of aquifers		
		methane production	2	
	7	impermeable (1) liner of the quarry floor (1)		
		to prevent leakage of leachate (1)		
		or impermeable (1) cover (1) to prevent water entry (1)	3	
	8	testing for potentially polluted water	1	15
	9	random crystal orientation	1	
	10	coarse crystals formed by slow cooling at depth		
		fine crystals formed by rapid cooling near the surface		
		coarse and fine crystals formed from a melt	3	
	11	columnar jointing	1	
	12	cooling magma		
		shrinkage		
		forms joints/vertical/hexagonal		
		insulated in the centre any 2 points	2	
	13	parallel to the bedding		
(2)		sill	2	
\bigcirc	14	E ripple marks		
		F cross bedding	2	
	15	north to south	1	
	16	faulting youngest		
		deposition of breccia and sandstone		
		uplift, tilting and erosion		
		intrusion of igneous body		
		deposition of limestone		
		deposition of shale oldest		
		all correct (3) 5 or 4 correct (2) 2 or 3 correct (1)	3	15
	1	u shaped	1	
	2	ice	1	
	3	abrasion	1	
	4	physical	1	
	5	water penetrates joints		
		freezes		
		expands		
		forces joints apart		
		thaws and water penetrates further		
		repeated		
		block fall-off		
		freeze-thaw any 3 points	3	
	6	medium-grained		
		poorly sorted		
		fragmental	3	
	7	granite	1	
	8	quartz resistant to chemical weathering		
		resistant to erosion		
		hard		
		no cleavage		
		quartz present in G any 2 points	2	
	9	feldspar affected by chemical weathering		
		hydrolysis		
		altered to clay minerals		
		softer than quartz		
		two cleavages any 2 points	2	15

