

TIME

2 hours.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. **You must answer the questions in the spaces provided.**

Do not write outside the boxed area on each page, on blank pages or tracing paper. Complete in blue or black ink only. **Do not write with a gel pen.**

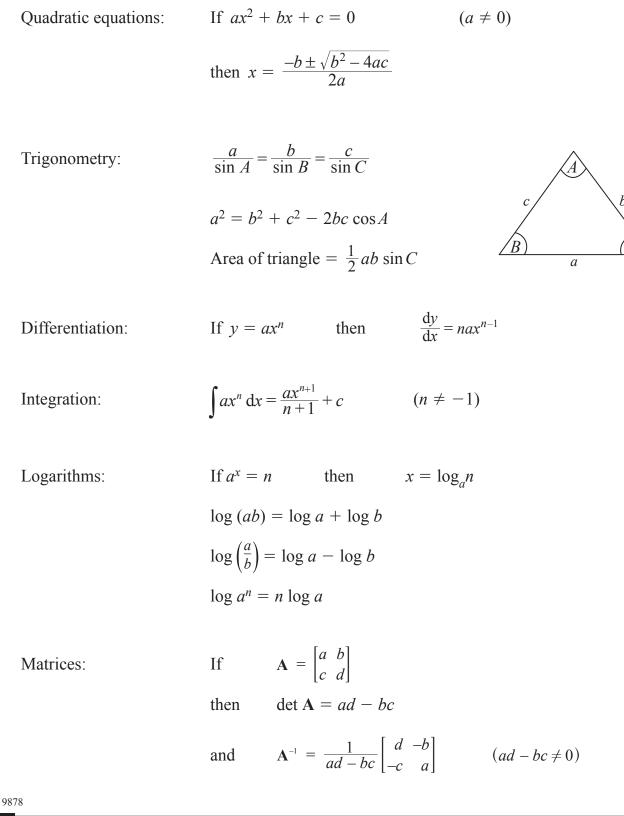
All working should be clearly shown in the spaces provided since marks may be awarded for partially correct solutions.

Where rounding is necessary give answers correct to **2 decimal places** unless stated otherwise. Answer **all fifteen** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 100. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. You may use a calculator. The Formula Sheet is on pages 2 and 3.

9878


44GMF2101

a 7 Learning Rowerting 200 Rewarding D

Resercin

Formula Sheet

PURE MATHEMATICS

44GMF2102

MECHANICS Magnitude of $x\mathbf{i} + y\mathbf{j}$ is given by $\sqrt{x^2 + y^2}$ Vectors: Angle between $x\mathbf{i} + y\mathbf{j}$ and \mathbf{i} is given by $\tan^{-1}\left(\frac{y}{x}\right)$ $s = \frac{1}{2}(u+v)t$ Uniform Acceleration: v = u + at $v^2 = u^2 + 2as$ $s = ut + \frac{1}{2}at^2$ where *u* is initial velocity v is final velocity *a* is acceleration Newton's Second Law: F = mawhere F is resultant force *a* is acceleration **STATISTICS** Mean = $\frac{\sum fx}{\sum f}$ Median = $L_1 + \frac{\left\{\frac{N}{2} - (\sum f)_1\right\}c}{f_{median}}$ Statistical measures:

where

 L_1 Ν

is lower class boundary of the median class

 $(\Sigma f)_1$ is the sum of the frequencies up to but not including the

t is time

m is mass

s is change in displacement

Probability:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Bivariate Analysis:

Spearman's coefficient of rank correlation is given by

is total frequency

 f_{median} is the frequency of the median class is the width of the median class

Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - (\bar{x})^2}$ where \bar{x} is the mean

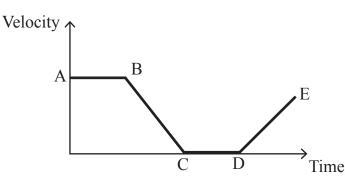
median class

$$r = 1 - \frac{6 \sum d^2}{n(n^2 - 1)}$$

9878

44GMF2103

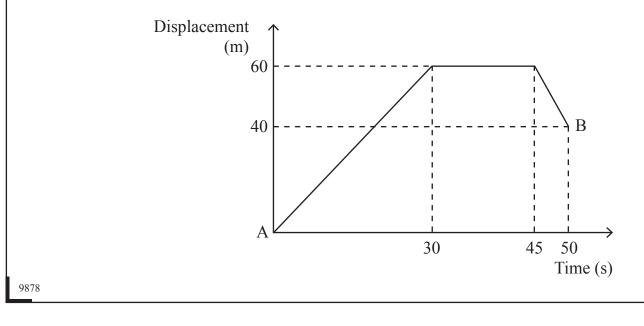
Turn over


Section A

Mechanics

You should spend approximately **one hour** on this section.

Take $g = 10 \text{ m/s}^2$ when required.


1 (a) The velocity/time graph for a car travelling along a straight road is given below.

Between which points is the car stationary?

- Answer _____ [1]
- (b) A particle starts from a point A and travels along a straight line. After 50 seconds it is at a point B on the line.

The displacement/time graph for its motion is shown in the diagram below.

44GMF2104

9878

Determine	
(i) the speed of the particle in the first 30 seconds,	
Answer	m/s [1]
(ii) the speed of the particle between 30 seconds and 45 seconds,	
Answer	m/s [1]
	m/s [1]
(iii) the total distance travelled by the particle.	
Answer	_ m[1]
	[1]
	[Turn over

a 20 7 Learning a Ð CC. Ð a 20 J Learning a Ð G D C. Ð a Ð CC. 20 7 Learning G 20 Learning C Ð a 20 y Learning a 20 J Learning a Ð Ð a 20 a Ð a Ð C 20 C 20 J Learning CC. 20 T Levandry a Ð C.

Resercin

2 (Throughout this question **i** and **j** denote unit vectors parallel to a set of standard *x*-*y* axes.)

A body is initially at an origin O and is travelling with an initial velocity of $(4\mathbf{i} + 5\mathbf{j})$ m/s.

The body accelerates uniformly for 4 seconds to a velocity of (-4i - j) m/s.

Calculate

(i) the acceleration of the body,

Answer _____ m/s² [2]

9878

44GMF2106

(ii)	the position	vector of t	he body	relative t	to O	after	the 4	seconds.
-------------	--------------	-------------	---------	------------	------	-------	-------	----------

Answer _____ m [2]

9878

[Turn over

44GMF2107

Resercin a 20 7 Learning a Ð a Ð a Ð a 20 CC. D a Ð a Ð a D a Ð a Ð a D a De a Ð a Ð a Ð a Ð a Ð a Ð D a 20 J Learning a Ð

[1]

3 A body leaves a point O with initial velocity u m/s. It moves along a straight line with constant acceleration a m/s².

Three seconds after leaving O the body is at a point A with velocity 12 m/s.

Eight seconds after leaving O the body is at a point B with velocity 16 m/s.

(i) Using the above information, write down two equations satisfied by u and a.

A nouver [1]		
	Answer	Г1 1

<u>۲1</u>					

Calculate

(ii) the value of *a*,

Answer _____

44GMF2108

9878

(iii) the value of *u*,

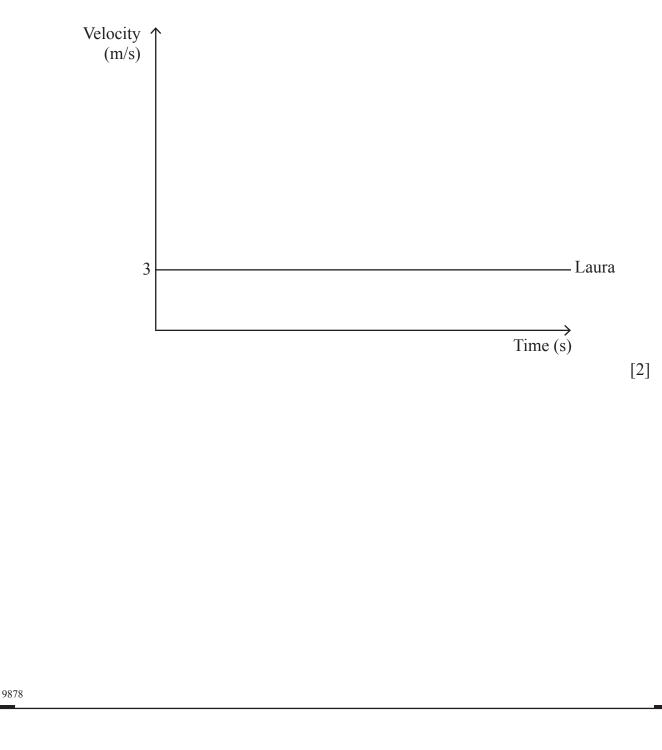
Answer [1]

(iv) the distance between A and B.

Answer _____ m [2]

9878

Turn over


44GMF2109

4 Laura is jogging at a constant velocity of 3 m/s when she passes a post office.

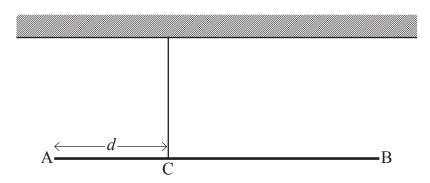
A cyclist, Emma, leaves the post office one minute after Laura had passed it.

Emma starts from rest and accelerates uniformly at 1.5 m/s^2 for 10 seconds to a maximum velocity of 15 m/s. Emma continues at this maximum velocity until she catches up with Laura.

(i) Sketch the velocity/time graph for Emma's journey on the diagram below.

44GMF2110

P2


9878

Emma catches up with Laura T seconds a	after Laura jogged past the post office.
Find expressions, in terms of T , for	
(ii) the distance travelled by Laura,	
Answer	m [1]
(iii) the distance travelled by Emma.	
Answer	m [2]
(iv) Calculate the time for which Emma	cycles before she catches up with Laura
(iv) Calculate the time for which Elinina	cycles before she eatenes up with Laura.
A	
Answer	s [2] [Turn over

44GMF2111

5 A uniform rod AB, of length 6 m and mass 2 kg, is connected to a fixed point on a ceiling by a light inextensible string. The string is connected to the rod at a point C, such that the distance AC is d m, as shown in the diagram below.

A mass of 5 kg is attached at A and a mass of 3 kg is attached at B.

The rod remains horizontal and in equilibrium.

(i) Mark on the diagram above all the forces acting on the rod.

Calculate

(ii) the tension in the string,

9878

44GMF2112

P2

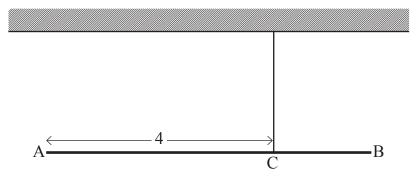
[2]

(iii) the value of *d*.

Answer _____ m [3]

Question 5 continues overleaf

9878


44GMF2113

[Turn over

Reservin 200 y Learning Romanda 20 y Leasting CC. D a 20 J Learning C De l'anterio Reservice D CC. Ð a 20 T Learning CC. 20 7 Learning G 20 J Learning C 20 C 2D a De D 200 a 20 The second Reserver 2D CC. 20 7 Learning Rewarding 200 Reserved 20 J Learning CC. 200 Reserved D C.

[3]

The point C is repositioned to a point 4 m from A, as shown in the diagram below.

The mass of 3 kg is removed from B and replaced by a mass of M kg.

The mass c	of 5 kg rer	nains at A.
------------	-------------	-------------

(iv) Calculate the value of *M* if the rod remains horizontal and in equilibrium.

Answer	

9878

44GMF2114

6 A block of mass 8 kg lies at rest on a rough horizontal table and is acted upon by a horizontal force of 40 N, as shown in the diagram below.

The block is on the point of moving.

- (i) Mark on the diagram above all the forces acting on the block. [1]
- (ii) Calculate the coefficient of friction between the block and the table.

Answer		[2]
Question 6 continue	s overleaf	

[Turn over

9878

44GMF2115

					,	★ 50 N	
				8kg			
				OKg			
Ca	lculate						
		al reaction b	between the	block and th	ne table,		
(,				,		
			Answer	·			N [2

44GMF2116

9878

(iv) the acceleration of the block.

Answer _____ m/s² [4]

[Turn over

44GMF2117

- Reasedin 20 J Learning a 20 J Learning a Ð a Ð a Ð a Ð a Ð a Ð a Ð a Ð a Ð a Ð a Ð a 2D a Ð a Ð a Ð a Ð a Ð a Ð Ð a 20 J Learning a Ð C.
- 7 A car of mass 1200 kg is towing a trailer of mass 500 kg by means of a light horizontal tow bar. The tractive force produced by the car's engine is 5330 N.

The car and trailer are travelling along a straight horizontal road, as shown below.

The resistance to the motion of the car is 1.6 N per kg of mass and the resistance to the motion of the trailer is 0.7 N per kg of mass.

The car and trailer accelerate uniformly from rest.

Calculate

(i) the total resistance to the motion of the car and trailer,

Answer

N [2]

9878

44GMF2118

(ii) the acceleration of the car and trailer,

Answer _____ m/s² [2]

(iii) the tension in the tow bar.

Answer ______ N [2]

Question 7 continues overleaf

9878

44GMF2119

[Turn over

After trav	elling for 10 seconds the	tow bar breaks.		
(iv) Calcu	late the speed of the car	and trailer when th	ne tow bar breaks.	
				/ [1
	Answ	er		m/s [1
	ning that the resistance to ate the additional distance			
	Answ	er		m [4

Reservin

Constant Reserved Particip Reserved Reserved Reserved

Reserving 7 Learning Reserving

D

44GMF2120

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

9878

[Turn over

44GMF2121

Section **B**

Statistics

You should spend approximately **one hour** on this section.

8 The lengths, in centimetres, of 50 objects were measured and recorded to 1 decimal place. The results are summarised in the table below.

Length (cm)	10.4–11.3	11.4–12.3	12.4–13.3	13.4–14.3
Number of objects	17	12	8	13

Write down

(i) the limits of the median class,

44GMF2122

D

9878

(ii) the boundaries of the modal class	
Answer	[2]
Each class has the same width.	
(iii) Write down the class width.	
Answer	cm [1]
	[Turn ove

9 The masses, in kilograms, of 37 bags of fruit are summarised in the table below.

Mass M(kg)	Number of bags
$1.4 < M \le 2.2$	6
$2.2 < M \le 3.0$	8
$3.0 < M \le 3.8$	7
$3.8 < M \le 4.6$	9
$4.6 < M \le 5.4$	7

(i) Calculate an estimate for the median mass.

Answer	 kg [4]

9878

44GMF2124

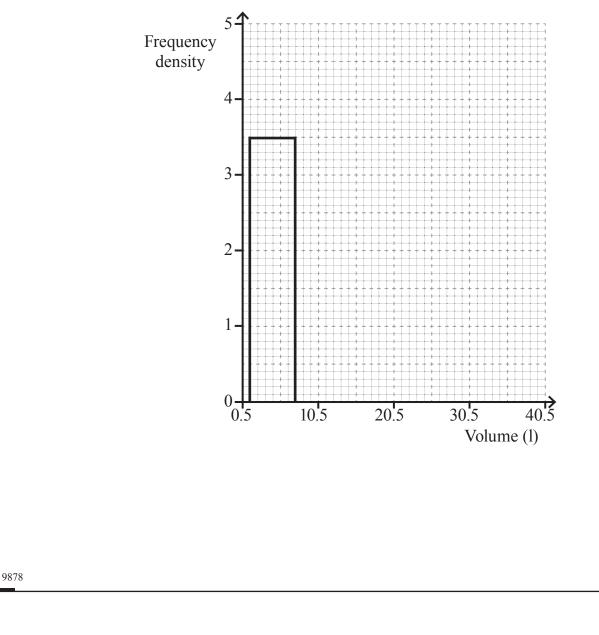
P2

Two more bags, with masses in the range $3.0 < M \le 3.8$, were then included.

- (ii) Identify from the list below which statement can be deduced from this information.
 - A The actual median will be lowered
 - B The actual median will be unchanged
 - C The actual median will be raised
 - D It is impossible to say what the effect will be on the actual median

Answer _____[1]

9878


[Turn over

10 The volumes, in litres, of different containers were measured and rounded to the nearest litre. The results are summarised in the incomplete table below.

Volume (l)	Frequency
2-7	
8–12	18
13–22	42
23–37	36

A histogram to show the information has been started below.

44GMF2126

D

(i) Calculate the frequency of containers in the class 2–7 litres.

[2] Answer

(ii) Complete the histogram on the page opposite for the other three classes. [4]

9878

[Turn over

- **11** Five candidates sat a History examination. Their actual marks are converted to uniform marks by doubling each mark and then adding 10
 - (i) Complete the table below for the mean and standard deviation of the uniform marks.

	Actual marks	Uniform marks
Mean	31.0	
Standard deviation	4.6	

[2]

A sixth candidate had an actual mark of 43

(ii) Find the mean of the actual marks for all six candidates.

9878

Answer _____

44GMF2128

[2]

C.

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

9878

[Turn over

44GMF2129

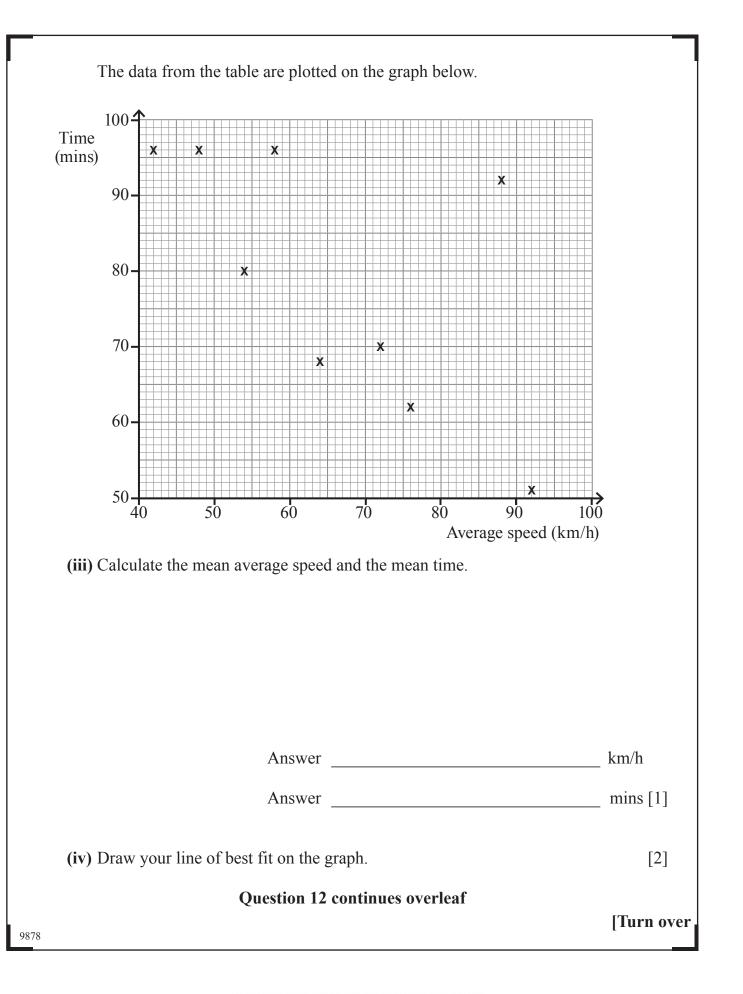
- Resercin a 20 J Learning a Ð a Ð a Ð a Ð G Ð a Ð a Ð C 20 7 Learning G D CC. Ð a D a 2D a Ð Ð a D a Ð C Ð a 20 CC. 200 J Learning CC. 20 J Learning a Ð
- 12 The average speeds, in km/h, and the times taken, in minutes, for nine people to travel to work are recorded in the table below.

	Conall	Jill	Frank	Paddy	Arthur	Declan	Faye	Норе	Thomas
Average speed (km/h)	48	54	88	72	64	92	42	58	76
Time (mins)	96	80	92	70	68	51	96	96	62
Ranks (Average speed)									
Ranks (Time)									

(i) By finding the rank orders for the average speeds and times, calculate Spearman's coefficient of rank correlation.

Answer _

[6]


(ii) What significance, if any, do you attach to the value you obtained in part (i)?

Answer _____ [1]

9878

44GMF2130

44GMF2131

Answer	
	[1]

44GMF2132

DO NOT WRITE ON THIS PAGE

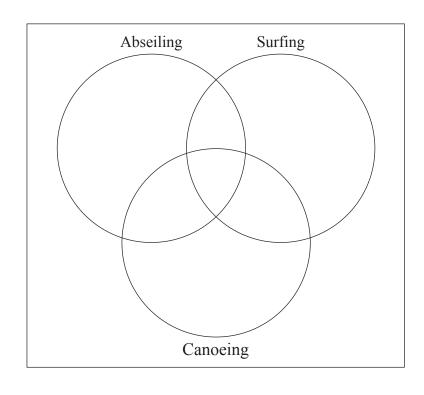
(Questions continue overleaf)

9878

[Turn over

44GMF2133

Resercin a 20 J Learning C D a Ð a D Q 20 CC. D a Ð a D a D a 20 Learning a Ð a D a 2D a Ð a Ð a D a Ð a Ð a 20 C D CC. 20 T Learning CC. Ð D


[3]

13 Ciaran went on an activity holiday over the summer.

The three different activities that he could take part in were abseiling, surfing and canoeing.

On a day chosen at random, the probability that he took part in all three activities was 0.07 abseiling and surfing was 0.17 abseiling and canoeing was 0.21 surfing and canoeing was 0.27 abseiling was 0.47 surfing was 0.5 none of these activities was 0.02

(i) Illustrate this information on the Venn diagram below.

9878

44GMF2134

(ii)	On a day chosen at random, find the probability that Ciaran only took part in
	canoeing.

Answer [2]

On a particular day Ciaran did not take part in abseiling.

(iii) Find the probability that he took part in surfing on that day.

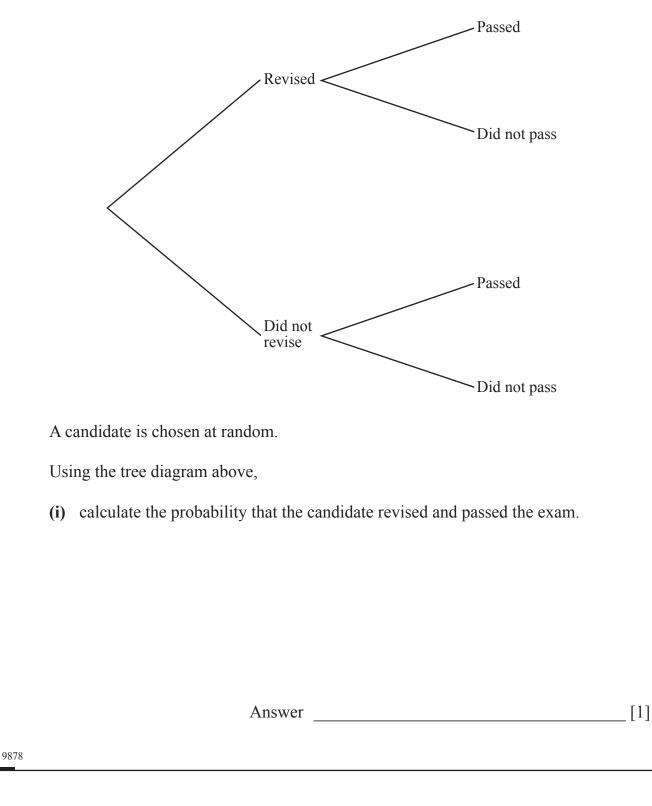
Answer

[2] [Turn over]

9878

44GMF2135

Of those who revised, 85% passed the exam.


The percentage of candidates who did not revise and who did not pass the exam was 15.2%.

20 7 Learning

a

D

D

44GMF2136

(ii)	John did not revise.	Calculate the probability that he did not pass.	

Answer _____ [2]

125 candidates sat the exam.

(iii) How many candidates passed the exam?

Answer _____[3]

9878

[Turn over

44GMF2137

- Resercin 200 C D CC. Ð a D 20 Learning G Ð Ð a D a D a Ð a Ð a D a 2D a Ð C Ð a D a Ð a Ð CC. D C 20 Learning CC. D a Ð D
- 15 On her way home from school each day, Lily either goes to the shop, visits her granny, does both or does neither.

The probability that Lily visits her granny is 0.55

The probability that Lily goes to the shop if she visits her granny is 0.4

The probability that Lily visits her granny if she goes to the shop is 0.88

Calculate the probability that

(i) Lily goes to the shop and visits her granny,

Answer

44GMF2138

9878

[2]

(ii) Lily goes to the shop,

Answer _____[2]

Question 15 continues overleaf

9878

44GMF2139

[Turn over

44GMF2140

THIS IS THE END OF THE QUESTION PAPER

Answer

[2]

Resercin

(iii) Lily goes to the shop or visits her granny.

DO NOT WRITE ON THIS PAGE

9878

44GMF2141

DO NOT WRITE ON THIS PAGE

44GMF2142

D

DO NOT WRITE ON THIS PAGE

9878

44GMF2143

DO NOT WRITE ON THIS PAGE

	For Examiner's use only	
	Question Number	Marks
	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
	14	
	15	
	Total Marks	
umber		

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

9878/7

44GMF2144