Rewarding Learning


Candidate Number


## Further Mathematics

## Unit 1



## [GMF11] <br> THURSDAY 16 JUNE, AFTERNOON

*GMF11*

## TIME

2 hours.

## INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. You must answer the questions in the spaces provided.
Do not write outside the boxed area on each page, on blank pages or tracing paper. Complete in blue or black ink only. Do not write with a gel pen.
All working should be clearly shown in the spaces provided since marks may be awarded for partially correct solutions.
Where rounding is necessary give answers correct to $\mathbf{2}$ decimal places unless stated otherwise.
Answer all sixteen questions.

## INFORMATION FOR CANDIDATES

The total mark for this paper is 100 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
You may use a calculator.
The Formula Sheet is on pages 2 and 3.

## Formula Sheet

## PURE MATHEMATICS

Quadratic equations:
If $a x^{2}+b x+c=0$
then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Trigonometry:
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$


Differentiation:
If $y=a x^{n} \quad$ then $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=n a x^{n-1}$

Integration:
$\int a x^{n} \mathrm{~d} x=\frac{a x^{n+1}}{n+1}+c \quad(n \neq-1)$

Logarithms:
If $a^{x}=n \quad$ then $\quad x=\log _{a} n$
$\log (a b)=\log a+\log b$
$\log \left(\frac{a}{b}\right)=\log a-\log b$
$\log a^{n}=n \log a$

Matrices:
If $\quad \mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
then $\quad \operatorname{det} \mathbf{A}=a d-b c$
and

$$
\mathbf{A}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] \quad(a d-b c \neq 0)
$$

## MECHANICS

Vectors: $\quad$ Magnitude of $x \mathbf{i}+y \mathbf{j}$ is given by $\sqrt{x^{2}+y^{2}}$
Angle between $x \mathbf{i}+y \mathbf{j}$ and $\mathbf{i}$ is given by $\tan ^{-1}\left(\frac{y}{x}\right)$

Uniform Acceleration: $v=u+a t$

$$
\begin{aligned}
& s=\frac{1}{2}(u+v) t \\
& s=u t+\frac{1}{2} a t^{2}
\end{aligned}
$$

$v^{2}=u^{2}+2 a s$

| where | $u$ is initial velocity | $t$ is time |
| :--- | :--- | :--- |
| $v$ is final velocity | $s$ is change in displacement |  |

Newton's Second Law: $F=m a$

$$
\begin{array}{ll}
\text { where } \quad F \text { is resultant force } \\
a \text { is acceleration }
\end{array} \quad m \text { is mass }
$$

## STATISTICS

Statistical measures: $\quad$ Mean $=\frac{\sum f x}{\Sigma f} \quad$ Median $=L_{1}+\frac{\left\{\frac{N}{2}-(\Sigma f)_{1}\right\} c}{f_{\text {median }}}$
where $\quad L_{1} \quad$ is lower class boundary of the median class
$N \quad$ is total frequency
$(\Sigma f)_{1}$ is the sum of the frequencies up to but not including the median class
$f_{\text {median }}$ is the frequency of the median class
$c \quad$ is the width of the median class
Standard deviation $=\sqrt{\frac{\sum x^{2}}{\sum f}-(\bar{x})^{2}} \quad$ where $\bar{x}$ is the mean

Probability:
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}$

Bivariate Analysis: Spearman's coefficient of rank correlation is given by

$$
r=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}
$$

1 Matrices A, B and $\mathbf{C}$ are defined by

$$
\mathbf{A}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
-1 & 2
\end{array}\right] \quad \text { and } \quad \mathbf{C}=\left[\begin{array}{r}
4 \\
-2
\end{array}\right]
$$

Express as a single matrix:
(i) $\mathbf{A}-3 \mathbf{C}$

Answer $\qquad$
(ii) AB

2 A function $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=x^{2}-4 x-5$
(i) Use the method of completing the square to rewrite $\mathrm{f}(x)$ in the form $(x+a)^{2}+b$.

> Answer
(ii) Hence find
(a) the minimum value of $\mathrm{f}(x)$,

Answer
(b) the value of $x$ for which this minimum occurs.

Answer $\qquad$

## 3 If $y=\frac{2}{3} x^{3}-\frac{7}{x}$ <br> （i）find $\frac{\mathrm{d} y}{\mathrm{~d} x}$

（ii）Hence find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$

## Answer

Answer $\qquad$

4 Find $\int_{1}^{2}\left(x^{3}-\frac{3}{2 x^{2}}\right) d x$

Answer

5 (a) Find the values of $p$ and $q$ if

$$
p\left[\begin{array}{l}
5 \\
2
\end{array}\right]+3\left[\begin{array}{r}
-1 \\
q
\end{array}\right]=\left[\begin{array}{r}
7 \\
-5
\end{array}\right]
$$

Answer $p=$ $\qquad$ , $q=$ $\qquad$ [2]
(b) The vectors $\mathbf{a}$ and $\mathbf{b}$ are shown below.


On the grids below, draw diagrams to show the vectors
(i) $\mathbf{b}-\mathbf{a}$

(ii) $2 \mathbf{a}+\mathbf{b}$


6 (i) Solve the equation

$$
\cos \theta=-0.65
$$

for $0^{\circ} \leq \theta \leq 360^{\circ}$

## Answer

(ii) Hence solve the equation

$$
\cos \left(2 x+20^{\circ}\right)=-0.65
$$

for $0^{\circ} \leq x \leq 180^{\circ}$

7 Solve the equation

$$
3^{2 x+1}=8^{4-x}
$$

8 The matrix $\mathbf{P}$ is defined by

$$
\mathbf{P}=\left[\begin{array}{rr}
4 & 3 \\
1 & -2
\end{array}\right]
$$

(i) Find the matrix $\mathbf{P}^{-1}$, the inverse of $\mathbf{P}$.
(ii) Hence, using a matrix method, solve the following simultaneous equations for $x$ and $y$.

$$
\begin{aligned}
4 x+3 y & =34 \\
x-2 y & =3
\end{aligned}
$$

$\qquad$ , $y=$ $\qquad$

9 Simplify fully the following algebraic expressions:
(i) $\frac{x}{x^{2}+6 x+8}+\frac{1}{x+2}$
(ii) $\frac{x^{2}-9}{4 x+12} \div \frac{x^{2}+x-12}{6}$

Answer $\qquad$

10 A curve is defined by the equation $y=(x+3)(x-4)$
(i) Write down the coordinates of the points where the curve crosses the $x$-axis.

Answer $\qquad$
(ii) Find the coordinates of the turning point of the curve.
(iii) Identify the turning point as either a maximum or a minimum point. You must show working to justify your answer.

> Answer
(iv) Using your results from parts (i) to (iii), sketch the curve on the axes below.


11 A local theatre company is putting on a weekend performance of a musical．
Tickets cost $£ x$ for seats in the stalls，$£ y$ for seats in the main circle and $£ z$ for seats in the balcony．

For the Friday evening performance they sold 60 tickets for the stalls， 84 tickets for the main circle and 48 tickets for the balcony．The total income from ticket sales was $£ 3696$
（i）Show that $x, y$ and $z$ satisfy the equation

$$
5 x+7 y+4 z=308
$$

For the Saturday evening performance they sold 56 tickets for the stalls， 63 tickets for the main circle and 42 tickets for the balcony．The total income from ticket sales was £3045
（ii）Show that $x, y$ and $z$ also satisfy the equation

$$
8 x+9 y+6 z=435
$$

For the Saturday matinee performance the price of all tickets is reduced by $£ 5$
For the matinee performance they sold 45 tickets for the stalls, 54 tickets for the main circle and 18 tickets for the balcony. The total income from ticket sales was $£ 1746$
(iii) Show that $x, y$, and $z$ also satisfy the equation

$$
5 x+6 y+2 z=259
$$

Question 11 continues overleaf
(iv) Solve the equations

$$
\begin{aligned}
& 5 x+7 y+4 z=308 \\
& 8 x+9 y+6 z=435 \\
& 5 x+6 y+2 z=259
\end{aligned}
$$

to find the original price of each type of ticket, showing clearly each stage of your solution.

You may use this page if needed.
(Questions continue overleaf.)

12 A search team wishes to look for an old galleon which was carrying gold and sank somewhere in the triangle between three points $\mathrm{X}, \mathrm{Y}$ and Z in the ocean. The distances $\mathrm{XY}, \mathrm{YZ}$ and XZ are $30 \mathrm{~km}, 40 \mathrm{~km}$ and 20 km respectively, as shown in the diagram below.


Calculate
(i) the size of the angle $X \hat{Y} Z$,
(ii) the area of the search region XYZ.

## Answer

$\qquad$ $\mathrm{km}^{2}$ [2]

Using sonar signals, two ships, A and $\mathrm{B}, 4 \mathrm{~km}$ apart, detected the galleon G on the bottom of the ocean, where $\mathrm{A}, \mathrm{B}$ and G were in the same vertical plane.

The angles $B \hat{A} G$ and $A \hat{B} G$ were measured as $19^{\circ}$ and $10^{\circ}$ respectively.

(iii) Write down the size of the angle AĜB.

> Answer
$\qquad$ ${ }^{\circ}$ [1]
(iv) Calculate the distance AG.

Ship A has a probe which can be lowered vertically downwards to inspect the galleon.
(v) Calculate the distance ship A needs to travel towards ship B to be vertically above the galleon.

Answer $\qquad$ km [2]

13 A curve is defined by the equation

$$
y=x^{2}+\frac{3}{2} x+\frac{5}{2}
$$

Find the equation of the normal to the curve at the point $\mathrm{A}(-1,2)$.

Answer $\qquad$

14 Mark drove to his cousin's wedding in Roscommon. The journey had two stages.
For the first stage of his journey he travelled 140 km at a speed of $x \mathrm{~km} / \mathrm{h}$.
For the second stage of his journey he travelled $x \mathrm{~km}$ at $64 \mathrm{~km} / \mathrm{h}$.
(i) Write down expressions in terms of $x$ for the times taken in each stage.

Answer First stage h [1]

Second stage $\qquad$ h [1]

The total time for both stages of his journey was 3 hours.
(ii) Show that $x$ satisfies the quadratic equation

$$
x^{2}-192 x+8960=0
$$

(iii) Solve this equation to find $x$, given that Mark did not break the speed limit of $96 \mathrm{~km} / \mathrm{h}$ at any time.

Answer $\qquad$
(iv) Find the total distance travelled by Mark.

Answer km [1]

15 In the diagram below， $\mathrm{A}, \mathrm{B}$ and C are points such that

$$
\overrightarrow{\mathrm{OA}}=\mathbf{a}, \overrightarrow{\mathrm{OB}}=\mathbf{b} \text { and } \overrightarrow{\mathrm{OC}}=2 \mathbf{a}+\mathbf{b}
$$

The midpoint of $A B$ is $M$ and the midpoint of $B C$ is $N$ ．

（i）Find in terms of $\mathbf{a}$ and $\mathbf{b}$ ，simplifying your answers as far as possible：
（a） $\overrightarrow{\mathrm{OM}}$
(b) $\overrightarrow{\mathrm{ON}}$

Answer
(ii) Prove that OANB is a parallelogram.

16 A tour company organises package holidays for walking groups to the Alps．
If there are $x$ people in the group the company will charge $£(1000-2 x)$ per person for the holiday．
（i）Write down，in terms of $x$ ，the total income the tour company will receive if a group of $x$ people travel． an
$\qquad$
$\qquad$

To run the holiday the company has to pay a fixed cost of $£ 20000$ to the airline operating the flight, as well as an additional cost of $£ 400$ per person for accommodation.
(ii) Show that when a group of $x$ people travel the profit, $£ P$, for the tour company is given by

$$
P=600 x-2 x^{2}-20000
$$


#### Abstract

(iii) Find the number of people in a group which will maximise the profit for the tour company, showing that it is a maximum.


(iv) Find the corresponding cost of the holiday for each member of the walking group.

Answer $£$

THIS IS THE END OF THE QUESTION PAPER
$\square$


DO NOT WRITE ON THIS PAGE

## DO NOT WRITE ON THIS PAGE

| For Examiner's <br> use only |  |
| :---: | :---: |
| Question <br> Number | Marks |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |
| 6 |  |
| 7 |  |
| 8 |  |
| 9 |  |
| 10 |  |
| 11 |  |
| 12 |  |
| 13 |  |
| 14 |  |
| 15 |  |
| 16 |  |

[^0] Marks

Examiner Number $\qquad$

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.


[^0]:    Total

