

	Cent	re Nu	mber
L			

Candidate Number

General Certificate of Secondary Education 2016

Further Mathematics

Unit 1

Pure Mathematics

[GMF11]

GMF11

THURSDAY 16 JUNE, AFTERNOON

TIME

2 hours.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. **You must answer the questions in the spaces provided.**

Do not write outside the boxed area on each page, on blank pages or tracing paper. Complete in blue or black ink only. **Do not write with a gel pen.**

All working should be clearly shown in the spaces provided since marks may be awarded for partially correct solutions.

Where rounding is necessary give answers correct to **2 decimal places** unless stated otherwise. Answer **all sixteen** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 100.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

You may use a calculator.

The Formula Sheet is on pages 2 and 3.

9853

a D

Resercin

Formula Sheet

PURE MATHEMATICS

36GMF1102

C	e of $x\mathbf{i} + y\mathbf{j}$ is given by	$\sqrt{x^2 + y^2}$	
Angle betv	ween $x\mathbf{i} + y\mathbf{j}$ and \mathbf{i} is given by	ven by $\tan^{-1}\left(\frac{y}{x}\right)$	
$v^2 = u^2 +$	2as $s = ut$	$+\frac{1}{2}at^{2}$	
where	<i>u</i> is initial velocity <i>v</i> is final velocity <i>a</i> is acceleration	<i>t</i> is time <i>s</i> is change in dis	splacement
F = ma			
where	<i>F</i> is resultant force <i>a</i> is acceleration	<i>m</i> is mass	
		$\begin{bmatrix} N & (\Sigma & C) \end{bmatrix}$	
Mean = $\frac{\Sigma}{\Sigma}$	$\frac{\sum fx}{\sum f}$ Median =	$L_1 + \frac{\left\{\frac{1}{2} - (2f)_1\right\}c}{f_{median}}$	
where	N is total frequency $(\Sigma f)_1$ is the sum of the f median class f_{median} is the frequency o	requencies up to but not ir f the median class	cluding the
Standard d	leviation = $\sqrt{\frac{\sum fx^2}{\sum f} - (fx^2)}$	$\left(\overline{x}\right)^2$ where \overline{x} is the m	ean
· /		∩ B)	
Spearman [*]	's coefficient of rank co	prrelation is given by	
$r = 1 - \frac{6}{3}$	$5\Sigma d^2$		
n($n^{2} - 1$)		[Turn o
	$v^2 = u^2 +$ where F = ma where Mean = $\frac{2}{3}$ where Standard c $P(A \cup B)$ $P(A \mid B) =$ Spearman	$v^{2} = u^{2} + 2as$ $s = ut$ where $u \text{ is initial velocity}$ $u \text{ is final velocity}$ $a \text{ is acceleration}$ $F = ma$ where $F \text{ is resultant force}$ $a \text{ is acceleration}$ Mean = $\frac{\sum fx}{\sum f}$ Median = where $L_{1} \text{ is lower class bou}$ $N \text{ is total frequency}$ $(\sum f)_{1} \text{ is the sum of the f}$ $median \text{ class}$ $f_{median} \text{ is the frequency o}$ $c \text{ is the width of the}$ Standard deviation = $\sqrt{\frac{\sum fx^{2}}{\sum f} - (C)}$ $P(A \cup B) = P(A) + P(B) - P(A)$ $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$	$v^{2} = u^{2} + 2as$ $s = ut + \frac{1}{2}at^{2}$ where $u \text{ is initial velocity}$ $v \text{ is final velocity}$ $s \text{ is change in dis}$ $F = ma$ where $F \text{ is resultant force}$ $a \text{ is acceleration}$ $Mean = \frac{\sum fx}{\sum f}$ Median = $L_{1} + \frac{\left\{\frac{N}{2} - (\sum f)_{1}\right\}c}{f_{median}}$ where L_{1} is lower class boundary of the median class N is total frequency $(\sum f)_{1} \text{ is the sum of the frequencies up to but not in median class}$ f_{median} is the frequency of the median class f_{median} is the frequency of the median class $S \text{ tandard deviation} = \sqrt{\frac{\sum fx^{2}}{\sum f} - (\overline{x})^{2}}$ where \overline{x} is the m $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$ Spearman's coefficient of rank correlation is given by

36GMF1103

1 Matrices A, B and C are defined by

$$\mathbf{A} = \begin{bmatrix} 2\\3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} -1 & 2 \end{bmatrix} \quad \text{and} \quad \mathbf{C} = \begin{bmatrix} 4\\-2 \end{bmatrix}$$

Express as a single matrix:

(i) A - 3C

Answer

(ii) AB

9853

[2	Answer

36GMF1104

_[2]

(ii)

9853

2	A function	f(x) is	defined by	$\mathbf{f}(x) = x^2$	-4x - 5
---	------------	---------	------------	-----------------------	---------

(i) Use the method of completing the square to rewrite f(x) in the form $(x + a)^2 + b$.

	Answer	[2]
He	ence find	
(a)	the minimum value of $f(x)$,	
	Answer	[1]
(b)	the value of x for which this minimum occurs.	
	Answer	[1] [Turn over]

36GMF1105

36GMF1106

D

4 Find $\int_{1}^{2} \left(x^{3} - \frac{3}{2x^{2}} \right) dx$

Answer [4]

____ L J

9853

[Turn over

36GMF1107

Reservin

Reservedor 2 Lourning Researcher 2 Lourning 2 Lourning 3 Lourning

Reserved Dep 2 Learning Dep 2 Learning Dep 2 Learning Dep 2 Learning

CC.

Reserving 2 Learning 2 Learning

Reserve

Postaria Pos

Denerting Reserved Participation Participation Participation Reserved

De la coming Romanda Para da Para da Para da Para da Para da Para da

2 Lourning Reserved 2 Lourning 2 Lourning Reserved Reserved

Annarchin Parametrin 2 Learning 2 Learning

D

36GMF1108

(b) The vectors **a** and **b** are shown below.

On the grids below, draw diagrams to show the vectors

(i) $\mathbf{b} - \mathbf{a}$

[1]

					1
					1
					1
		1			1
					1
					1
					1
					1

9853

[Turn over

[1]

36GMF1110

Resercin 20 7 Leventry CC. 200 y Learning CC. 20 y Learning CC. 200 y Learning Resarding 20 7 Learning Reverting 20 J Learning Romanda 20 JLearning CC. CC. 20 J Learning CC. 20 7 Learning CC. 200 y Learning C. 20 J Learning CC. 20 J Learning Reserver 20 7 Learning CC. 20 7 Learning CC. 20 Rewarding 20 y Learning Reserved CC. D

P2

7 Solve the equation

 $3^{2x+1} = 8^{4-x}$

Answer [5]

9853

36GMF1111

8 The matrix **P** is defined by

$$\mathbf{P} = \begin{bmatrix} 4 & 3\\ 1 & -2 \end{bmatrix}$$

(i) Find the matrix \mathbf{P}^{-1} , the inverse of \mathbf{P} .

Answer [2]

Reservin

36GMF1112

(ii) Hence, **using a matrix method**, solve the following simultaneous equations for *x* and *y*.

$$4x + 3y = 34$$
$$x - 2y = 3$$

[Turn over

9853

36GMF1113

(i)
$$\frac{x}{x^2+6x+8} + \frac{1}{x+2}$$

[3]

Reservin

200

Answer

9853

36GMF1114

(ii)
$$\frac{x^2 - 9}{4x + 12} \div \frac{x^2 + x - 12}{6}$$

Answer _____

_____ [4] [Turn over

9853

36GMF1115

Reserving
Ð
1 country
Reservery
30
200 7 Learning
Rosardin
Rowardin
7 Learning
Reserving
Ð
g Learning
7 Learning CCC Revesarility
Research
D
Research
D
7 Learning
Rewarding
E
7 Loanny
CC.
20
Romartin Possivility
Rowarding
Ð
7 Learning
Rewarding
Rewarding
Ð
CC Rowerthy DD y Lowerthy
DD
Learning
7 Learning Researching
Researching
7 Learning
Rowardin
2D 2 Learning
2D 2 Learning
D z Learning Rowarding

. .

10 A curve is defined by the equation $y = (x + 3)(x + 3)$	-4)
--	-----

(i) Write down the coordinates of the points where the curve crosses the x-axis.

Answer _____ [2]

(ii) Find the coordinates of the turning point of the curve.

Answer _____ [4]

9853

36GMF1116

(iii) Identify the turning point as either a maximum or a minimum point. You must
show working to justify your answer.

Answer _____[1]

(iv) Using your results from parts (i) to (iii), sketch the curve on the axes below.

11 A local theatre company is putting on a weekend performance of a musical.

Tickets cost $\pounds x$ for seats in the stalls, $\pounds y$ for seats in the main circle and $\pounds z$ for seats in the balcony.

For the Friday evening performance they sold 60 tickets for the stalls, 84 tickets for the main circle and 48 tickets for the balcony. The total income from ticket sales was £3696

(i) Show that *x*, *y* and *z* satisfy the equation

5x + 7y + 4z = 308

[1]

[1]

For the Saturday evening performance they sold 56 tickets for the stalls, 63 tickets for the main circle and 42 tickets for the balcony. The total income from ticket sales was £3045

(ii) Show that x, y and z also satisfy the equation

8x + 9y + 6z = 435

9853

36GMF1118

For the Saturday matinee performance the price of **all** tickets is reduced by £5

For the matinee performance they sold 45 tickets for the stalls, 54 tickets for the main circle and 18 tickets for the balcony. The total income from ticket sales was $\pounds 1746$

(iii) Show that *x*, *y*, and *z* also satisfy the equation

5x + 6y + 2z = 259

Question 11 continues overleaf

9853

[Turn over

[2]

36GMF1119

(iv) Solve the equations

5x + 7y + 4z = 308 8x + 9y + 6z = 4355x + 6y + 2z = 259

to find the **original** price of each type of ticket, showing clearly each stage of your solution.

Answer Stalls £,	Main circle \pounds	, Balcony £	[8]
------------------	-----------------------	-------------	-----

9853

36GMF1120

You may use this page if needed. (Questions continue overleaf.)

9853

[Turn over

36GMF1121

12 A search team wishes to look for an old galleon which was carrying gold and sank somewhere in the triangle between three points X, Y and Z in the ocean. The distances XY, YZ and XZ are 30 km, 40 km and 20 km respectively, as shown in the diagram below.

Calculate

9853

(i) the size of the angle $X\hat{Y}Z$,

° [3] Answer

36GMF1122

Resercin G 20 7 Learning C 2D G Ð a D 20 G D a Ð a Ð a 20 a 20 Learning a Ð a 2D a 20 J Learning a Ð Ð a D a Ð a Ð CC. 20 CC: 20 J Learning 20 CC. Ð

P2

9853

(ii) the area of the search region XYZ.

Using sonar signals, two ships, A and B, 4km apart, detected the galleon G on the bottom of the ocean, where A, B and G were in the same vertical plane.

The angles BÂG and ABG were measured as 19° and 10° respectively.

36GMF1123

(iv) Calculate the dist	tance AG.	
	Answer	km [2]
Ship A has a probe w	hich can be lowered vertically downw	ards to inspect the galleon.
(v) Calculate the dist the galleon.	tance ship A needs to travel towards sh	ip B to be vertically above
	Answer	km [2]

Reservin

Reserver 200 Rewarding 200 C 200 J Learning

C 200 7 Levening

D

36GMF1124

9853

13 A curve is defined by the equation

$$v = x^2 + \frac{3}{2}x + \frac{5}{2}$$

Find the equation of the **normal** to the curve at the point A(-1, 2).

Answer [4]

Turn over

36GMF1125

- Resercin G 20 J Learning a Ð a Ð a Ð a D) Revertin 20 Learning Ca. D CC. D Ð CC: Ð a Ð a D Ð Ð a D a Ð Ð Revender 20 7 Learning C CC. D CC. Ð
- Mark drove to his cousin's wedding in Roscommon. The journey had two stages.For the first stage of his journey he travelled 140 km at a speed of *x* km/h.For the second stage of his journey he travelled *x* km at 64 km/h.
 - (i) Write down expressions in terms of x for the times taken in each stage.

Second stage _____ h [1]

The total time for both stages of his journey was 3 hours.

(ii) Show that x satisfies the quadratic equation

 $x^2 - 192x + 8960 = 0$

[2]

9853

36GMF1126

(iii) Solve this equation to find x, given that Mark did not break the speed	limit of
96 km/h at any time.	

Answer [2]

(iv) Find the total distance travelled by Mark.

Answer _____ km [1]

9853

[Turn over

36GMF1127

 $\overrightarrow{OA} = \mathbf{a}, \ \overrightarrow{OB} = \mathbf{b} \ \text{and} \ \overrightarrow{OC} = 2\mathbf{a} + \mathbf{b}.$

The midpoint of AB is M and the midpoint of BC is N.

Answer _____ [2]

9853

36GMF1128

D

(b) \overrightarrow{ON}

Answer _____[2]

(ii) Prove that OANB is a parallelogram.

9853

[2]

[Turn over

36GMF1129

200 y Learning C 2D CC. Ð 20 J Learning 20 7 Learning CC. D CC. Ð a 20 T Learning C 20 7 Learning CC. 20 Learning CC. Ð a 2D a 20 J Learning a Ð Ð a 20 a Ð a Ð CC. 20 C 20 J Loaming CC. 20 T Learning CC. Ð P2

[1]

Resercin

16 A tour company organises package holidays for walking groups to the Alps.

If there are x people in the group the company will charge $\pounds(1000 - 2x)$ per person for the holiday.

(i) Write down, in terms of x, the total income the tour company will receive if a group of x people travel.

Answer

9853

36GMF1130

9853

To run the holiday the company has to pay a fixed cost of $\pounds 20\,000$ to the airline operating the flight, as well as an additional cost of $\pounds 400$ per person for accommodation.

(ii) Show that when a group of x people travel the profit, $\pounds P$, for the tour company is given by

 $P = 600x - 2x^2 - 20\,000$

[3]

[Turn over

[4]

(iii) Find the number of people in a group which will maximise the profit for the tour company, showing that it is a maximum.

Answer

36GMF1132

(iv) Find the corresponding cost of the holiday for each member of the walking group.

Answer £ _____ [1]

THIS IS THE END OF THE QUESTION PAPER

9853

BLANK PAGE

DO NOT WRITE ON THIS PAGE

36GMF1134

D

BLANK PAGE

DO NOT WRITE ON THIS PAGE

9853

36GMF1135

DO NOT WRITE ON THIS PAGE

	For Examiner's use only	
	Question Number	Marks
	1	
	2	
	3	
	4	
	5	
	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
	14	
	15	
	16	
	Total Marks	
Examiner Number		
		I

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

9853/7

36GMF1136