

Further Mathematics

Unit 2

Mechanics and Statistics

StudentBounty.com

[GMF21]

FRIDAY 13 JUNE, MORNING

TIME

2 hours.

Candidates should spend approximately one hour on each section.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Complete in blue or black ink only. Do not write with a gel pen.

All working should be clearly shown since marks may be awarded for partially correct solutions.

Where rounding is necessary give answers correct to **2 decimal places** unless stated otherwise.

Answer all thirteen questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 100.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

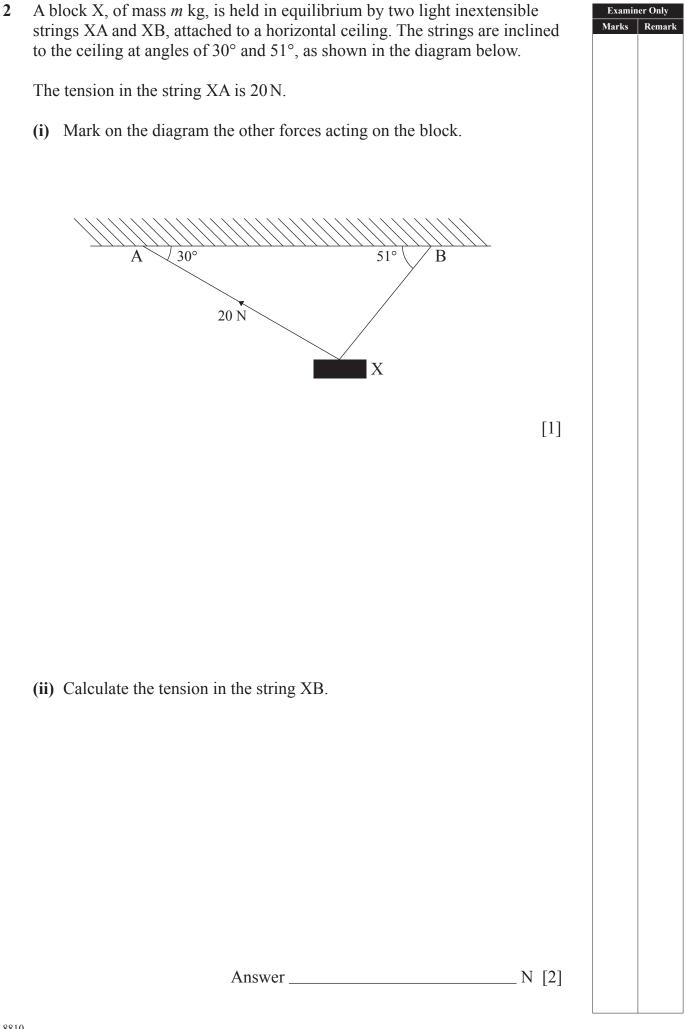
You may use a calculator.

The Formula Sheet is on pages 2 and 3.

Formula Sheet

PURE MATHEMATICS

Quadratic equations:	If $ax^2 + bx + c = 0$	$(a \neq 0)$
	then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
Trigonometry:	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	Â
	$a^2 = b^2 + c^2 - 2bc \cos A$	
	Area of triangle = $\frac{1}{2}ab\sin C$	\underline{B} \overline{C} a
Differentiation:	If $y = ax^n$ then $\frac{dy}{dx} =$	nax^{n-1}
Integration:	$\int ax^n \mathrm{d}x = \frac{ax^{n+1}}{n+1} + c \qquad (n \neq 1)$	-1)
Logarithms:	If $a^x = n$ then $x = \log a^x$	g _a n
	$\log\left(ab\right) = \log a + \log b$	
	$\log\left(\frac{a}{b}\right) = \log a - \log b$	
	$\log a^n = n \log a$	
Matrices:	If $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$	
	then $\det \mathbf{A} = ad - bc$	
	and $\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$	$(ad - bc \neq 0)$

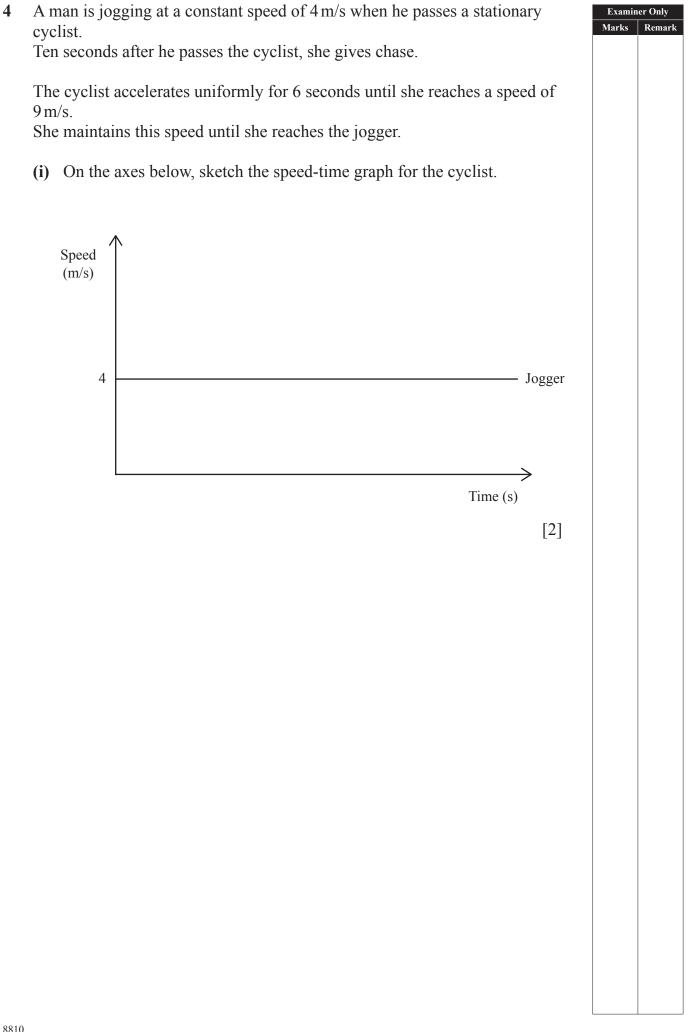

MECHANICS

Vectors:	Magnitude of $x\mathbf{i} + y\mathbf{j}$ is given by $\sqrt{x^2 + y^2}$			
	Angle between $x\mathbf{i} + y\mathbf{j}$ and \mathbf{i} is given by $\tan^{-1}\left(\frac{y}{x}\right)$			
Uniform Acceleration:	$v = u + a$ $v^2 = u^2 + a$		$s = \frac{1}{2}(u + v)$ $s = ut + \frac{1}{2}at$	
Newton's Second Law:	where $F = ma$	<i>u</i> is initial velocity <i>v</i> is final velocity <i>a</i> is acceleration	•	<i>t</i> is time <i>s</i> is change in displacement
Tienton 5 Second Law.	where	<i>F</i> is resultant for <i>a</i> is acceleration	ce	<i>m</i> is mass
STATISTICS Statistical measures:	Mean = $\frac{2}{3}$	$\frac{\Sigma fx}{\Sigma f}$ Me	$dian = L_1 + \cdot$	$\frac{\left\{\frac{N}{2} - (\Sigma f)_{l}\right\}c}{f_{median}}$
	where	\dot{N} is total fr $(\Sigma f)_1$ is the sum median c f_{median} is the free	equency n of the frequenc lass	f the median class ries up to but not including the edian class n class
	Standard d	deviation = $\sqrt{\frac{\Sigma}{\Sigma}}$	$\frac{fx^2}{2f} - (\bar{x})^2$	where \overline{x} is the mean
Probability:		$= P(A) + P(B)$ $= \frac{P(A \cap B)}{P(B)}$	$-P(A \cap B)$	
Bivariate Analysis:	Spearman	's coefficient of	rank correlation	on is given by
	$r = 1 - \frac{6}{n}$	$\frac{5\Sigma d^2}{(n^2-1)}$		

Section A Examiner Only Marks Remark **Mechanics** You should spend approximately **one hour** on this section. Take $g = 10 \text{ m/s}^2$ when required. (Throughout this question i and j denote unit vectors parallel to a set of standard *x-y* axes.) Vectors **a** and **b** are defined by $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j}$ and $\mathbf{b} = 4\mathbf{i} - 2\mathbf{j}$ Find (i) the vector $3\mathbf{a} - \mathbf{b}$ in terms of i and j, Answer _____ [2] (ii) the magnitude of the vector $3\mathbf{a} - \mathbf{b}$, Answer _____ [1]

1

(iii) the acute angle the vector $3\mathbf{a} - \mathbf{b}$ makes with the positive x-axis.	Examin	
	Marks	Remark
Answer° [1]		
	[Tur	n over


(iii) Calculate the value of *m*.

Answer _____ [3]

Examiner Only Marks Remark

A uniform plank AB, of length 6 m and mass 12 kg, is held horizontally by 3 **Examiner Only** Marks Remark two vertical strings attached to a ceiling. The strings are connected to the plank at the points C and D, as shown in the diagram below, where AC = 1 m and AD = 4 m. (i) On the diagram mark all the forces acting on the plank. A $\square B$ С D [1] (ii) Calculate the tension in each of the two strings. Answer ______ N and _____ N [3]

A mass M kg is attached to the end B so that the plank is on the point of turning about D.	Examiner Only Marks Remark
(iii) Write down the tension in the string at C.	
Answer N	[1]
(iv) Calculate the value of <i>M</i> .	
Answer	[2]
	[3]
	[Turn over

Hence, or otherwise, calculate	Examin Marks	er Only Remark
(ii) the time taken for the cyclist to reach the jogger,	Marks	Keinai K
Answers [5]		
(iii) the distance travelled by the cyclist when she reaches the jogger.		
(in) the distance travened by the eyenst when she reaches the joggen.		
Answer m [2]		

A missile is fired vertically upwards from the ground. It starts from rest and rises with a constant acceleration of 5 m/s^2 . The missile's fuel burns out after 10 seconds.	Examiner Only Marks Remark
(i) Calculate the height of the missile after 10 seconds.	
Answer m [2]	
(ii) Calculate the speed of the missile after 10 seconds.	
Answer m/s [2]	
After the fuel runs out, the missile continues to rise vertically, and can be modelled as a particle travelling freely under gravity.	
(iii) Calculate the maximum height above the ground reached by the missile.	
Angwor m [2]	
	and rises with a constant acceleration of 5 m/s ² . The missile's fuel burns out after 10 seconds. (i) Calculate the height of the missile after 10 seconds. Answer m [2] (ii) Calculate the speed of the missile after 10 seconds. Answer m/s [2] After the fuel runs out, the missile continues to rise vertically, and can be modelled as a particle travelling freely under gravity. (ii) Calculate the maximum height above the ground reached by the

Examiner Only Marks Remark

Answer ______s [4]

A block of mass 5 kg is on a rough plane which is inclined at an angle of **Examiner Only** 15° to the horizontal, as shown in the diagram below. Marks Remarl 15° The block is projected up the plane with a speed of 8 m/s, and travels up the plane for 2 seconds before coming to rest momentarily. (i) Show that the deceleration of the block is 4 m/s^2 . [1] (ii) Calculate the magnitude of the normal reaction between the block and the plane. Answer ______ N [1]

6

(iii) Calculate the magnitude of the frictional resistance.	Examin	er Only
	Marks	Remark
Answer N [3]		
(iv) Calculate the coefficient of friction.		
Answer [2]		
The block now slides down the plane.		
The block now blaces down the plane.		
(v) Calculate the acceleration of the block down the plane.		
Answer m/s^2 [5]		

Section **B**

Statistics

You should spend approximately **one hour** on this section.

7 While waiting for his flight home, Dominic recorded the time intervals, in minutes and seconds, between planes taking off from one runway at Heathrow Airport. His results are given in the table below.

Minutes	Seconds
0	58
2	17
0	50
1	04
1	21
0	58
0	52
1	56
1	11
2	13

(i) Calculate the mean of these times. Give your answer in minutes and seconds.

Answer _____

[2]

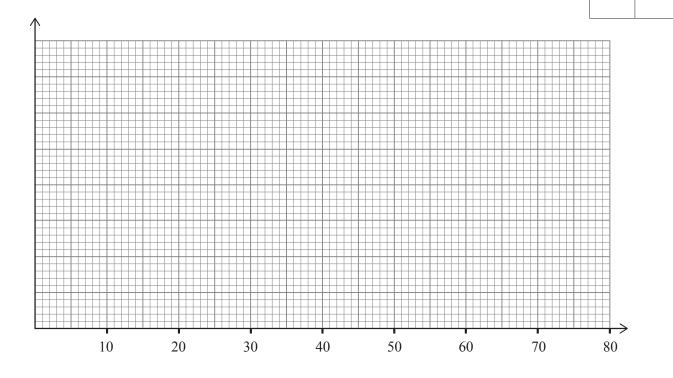
Examiner Only Marks Remark

Answer _____s [2]

Examiner Only Marks Remark 8 When training for a ski jump competition Gerry recorded the length of each of his jumps, correct to the nearest metre. His results are summarised in the table below.

Examiner Only Marks Remark

Distance (m)	31–50	51-70	71–90	91–100	101–110	111–120
Number of jumps	2	11	16	23	8	1

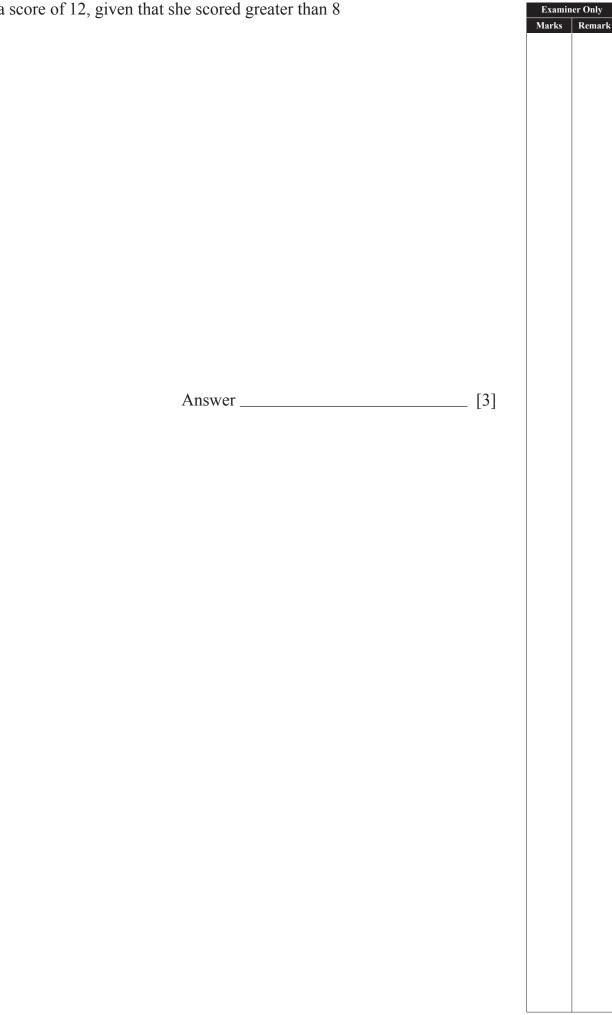

(i) Calculate an estimate for the median distance jumped.

	Answer m [4]
(ii)	Why is this an estimate for the median distance jumped?	
	Answer	
	[1]

9 On Monday a librarian recorded the ages of people visiting the library. The results are summarised in the table below.

Age (years)	4-11	12–17	18–37	38–57	58–77
Number of visitors	44	36	63	56	48

Using the axes below, draw a histogram to represent this information. Label each axis clearly.



Examiner Only

Marks Remarl

[Turn over

10	Molly is playing a game with a regular six-sided die.		Examin Marks	er Only Remark
	She throws the die once, and if the score is not a 6 then this score is recorded.		Marks	Kunar K
	If she throws a 6 on her first throw, then she is given a second throw ar total of both throws is recorded.	nd the		
	Find the probability of Molly getting			
	(i) a total score of 6,			
	(ii) a total score of 8,	_ [1]		
	Answer(iii) a score greater than 8,	_ [2]		
	Answer	_ [3]		

[Turn over

11	A bag contains 4 red sweets and some yellow sweets.	Examiner Only Marks Remark
	One sweet is selected at random.	
	By letting x equal the number of yellow sweets in the bag,	
	(i) write down the probability, in terms of x , that the sweet selected is red.	
	Answer [1]	
	A second sweet is selected at random from the remaining sweets in the bag.	
	(ii) Write down the probability, in terms of <i>x</i>, that both sweets selected are red.	
	Answer [2]	

The probability that both sweets selected are red is $\frac{1}{6}$

(iii) By forming an equation in x, determine the number of yellow sweets that were in the bag.

Answer _____ [2]

Examiner Only

Marks Remark

12	Throughout the month of May, Aoife recorded the number of days on w she revised for her three science subjects, Chemistry, Physics and Biolog		Examin Marks	er Only Remark
	On 4 days she revised all 3 science subjects. On 8 days she revised both Biology and Physics. On 11 days she revised both Chemistry and Biology. On 9 days she revised both Chemistry and Physics. On 19 days she revised Chemistry. On 15 days she revised Physics. On 16 days she revised Biology.			
	(i) Illustrate this information on a Venn Diagram.			
	(ii) On how many days did she not revise any of her science subjects?	[3]		
	Answer	_ [1]		
		· L J		

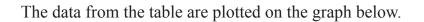
d	Examin Marks	er Only Remark
[2]		
[3]		
	[77	n over
		_ [2]

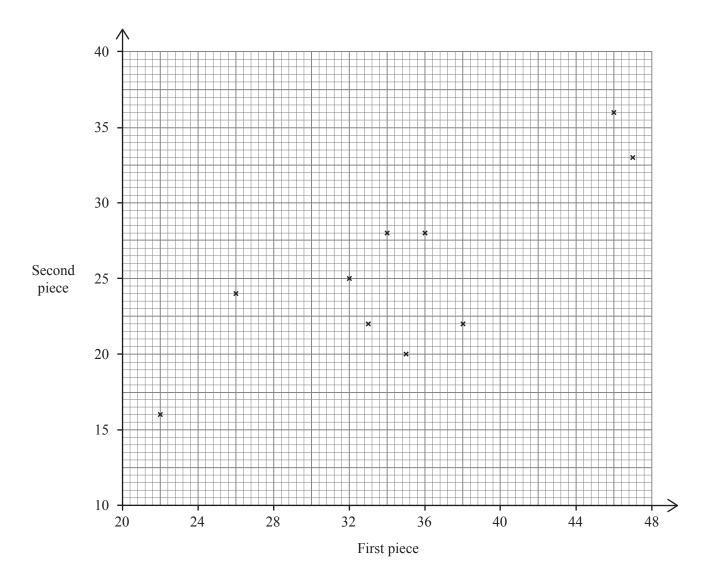
13 The marks achieved by 10 students for each of their two Learning for Life and Work coursework pieces are recorded in the table below.

First piece	36	26	34	32	22	47	33	46	38	35
Second piece	28	24	28	25	16	33	22	36	22	20

Examiner Only

Marks Remark

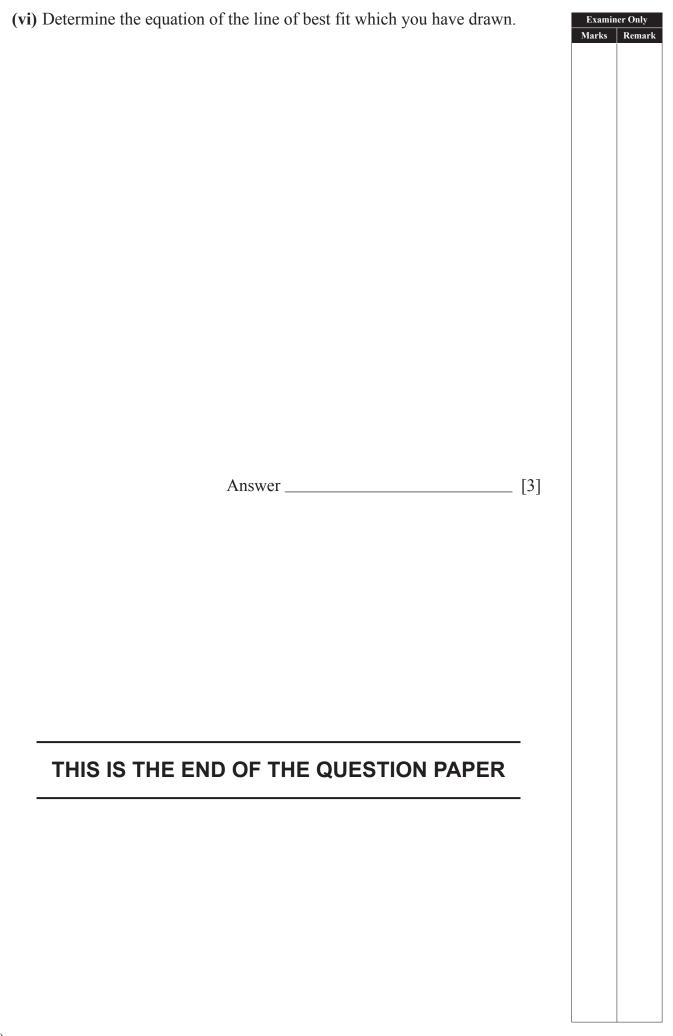

[2]


(i) Find the rank orders for the marks in each of these coursework pieces.

(ii) Calculate Spearman's coefficient of rank correlation.

Answer _____ [4]

(iii) What significance in (ii)?	e, if any, do you attach to the value you obtai	ned	Examiner Only Marks Remark
Answer		[1]	
(iv) Calculate the mea	an score in each coursework piece.		
Answer	First piece		
Allswei	Second piece		
			[Turn over



(v) Draw your line of best fit on the graph.

Examiner Only Marks Remark

For Examiner's use only				
Question Number	Marks			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
Total Marks				

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.