General Certificate of Secondary Education

2014

Further Mathematics

Unit 1

Pure Mathematics

TIME

2 hours.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
You must answer the questions in the spaces provided.
Complete in blue or black ink only. Do not write with a gel pen.
All working should be clearly shown since marks may be awarded for partially correct solutions.
Where rounding is necessary give answers correct to $\mathbf{2}$ decimal places unless stated otherwise.
Answer all sixteen questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 100 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
You may use a calculator.
The Formula Sheet is on pages 2 and 3.

Formula Sheet

PURE MATHEMATICS

Quadratic equations:
If $a x^{2}+b x+c=0 \quad(a \neq 0)$
then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Trigonometry:
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Differentiation:
If $y=a x^{n} \quad$ then $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=n a x^{n-1}$

Integration:
$\int a x^{n} \mathrm{~d} x=\frac{a x^{n+1}}{n+1}+c \quad(n \neq-1)$

Logarithms:
If $a^{x}=n \quad$ then $\quad x=\log _{a} n$
$\log (a b)=\log a+\log b$
$\log \left(\frac{a}{b}\right)=\log a-\log b$
$\log a^{n}=n \log a$

Matrices:
If $\quad \mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
then $\quad \operatorname{det} \mathbf{A}=a d-b c$
and

$$
\mathbf{A}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right] \quad(a d-b c \neq 0)
$$

MECHANICS

Vectors:
Magnitude of $x \mathbf{i}+y \mathbf{j}$ is given by $\sqrt{x^{2}+y^{2}}$
Angle between $x \mathbf{i}+y \mathbf{j}$ and \mathbf{i} is given by $\tan ^{-1}\left(\frac{y}{x}\right)$

Uniform Acceleration: $v=u+a t$
$s=\frac{1}{2}(u+v) t$
$v^{2}=u^{2}+2 a s$
$s=u t+\frac{1}{2} a t^{2}$

where	u is initial velocity	t is time
v is final velocity		
a is acceleration		

Newton's Second Law: $F=m a$

where \quad| F is resultant force |
| :--- |
| a is acceleration |$\quad m$ is mass

STATISTICS

Statistical measures: \quad Mean $=\frac{\sum f x}{\Sigma f}$

$$
\text { Median }=L_{1}+\frac{\left\{\frac{N}{2}-(\Sigma f)_{1}\right\} c}{f_{\text {median }}}
$$

$\begin{array}{lll}\text { where } & L_{1} & \text { is lower class boundary of the median class } \\ & N & \text { is total frequency }\end{array}$
$(\Sigma f)_{1}$ is the sum of the frequencies up to but not including the median class
$f_{\text {median }}$ is the frequency of the median class
c is the width of the median class
Standard deviation $=\sqrt{\frac{\sum x^{2}}{\sum f}-(\bar{x})^{2}} \quad$ where \bar{x} is the mean

Probability:
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}$
Bivariate Analysis: Spearman's coefficient of rank correlation is given by
$r=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}$

1 Matrices \mathbf{A} and \mathbf{B} are given by

$$
\mathbf{A}=\left[\begin{array}{rr}
3 & -2 \\
4 & 5
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{rr}
-1 & 7 \\
4 & -2
\end{array}\right]
$$

Express as a single matrix:
(i) $\mathbf{A}+\mathbf{B}$
\qquad
Answer
(ii) \mathbf{A}^{2}
$\xrightarrow{ }$
(iii) Hence find the 2×2 matrix \mathbf{X} which satisfies the equation

$$
\mathbf{X}+\mathbf{B}=\mathbf{A}^{2}
$$

2 (a) Simplify the vector expression

$$
\left[\begin{array}{r}
-2 \\
7
\end{array}\right]+3\left[\begin{array}{r}
4 \\
-5
\end{array}\right]
$$

Answer
(b) The vectors \mathbf{r} and \mathbf{s} are shown below.

On the grids below, show
(i) the vector $\mathbf{s}-\mathbf{r}$

(ii) the vector $\mathbf{r}+3 \mathbf{s}$

3 Solve the equation $x^{2}-4 x-2=0 \quad$ by completing the square.
Give your answer in the form $a \pm \sqrt{b}$ where a and b are whole numbers.

Answer
(i) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
\qquad
Answer

5 Find $\int_{-4}^{1}\left(4 x-\frac{2}{x^{3}}+6\right) \mathrm{d} x$

Answer

6 (i) Solve the equation

$$
\tan \theta=0.6
$$

for $-180^{\circ} \leqslant \theta \leqslant 180^{\circ}$

Answer
(ii) Hence solve the equation

$$
\begin{aligned}
& \qquad \tan \left(\frac{1}{2} x-60^{\circ}\right)=0.6 \\
& \text { for }-360^{\circ} \leqslant x \leqslant 360^{\circ}
\end{aligned}
$$

7 Matrices \mathbf{P} and \mathbf{Q} are given by

$$
\mathbf{P}=\left[\begin{array}{ll}
4 & -3 \\
2 & -9
\end{array}\right] \quad \text { and } \quad \mathbf{Q}=\left[\begin{array}{l}
6 \\
8
\end{array}\right]
$$

(i) Find \mathbf{P}^{-1}

Answer
(ii) Hence find the matrix \mathbf{X} where $\mathbf{P X}=\mathbf{Q}$

Answer

BLANK PAGE

(Questions continue overleaf)

8 Simplify fully the following expressions:
(i) $\frac{4 x^{2}-9}{(x-1)^{2}} \times \frac{x^{2}-x}{2 x+3}$
(ii) $\frac{3 x+8}{x+3}-\frac{6 x}{2 x+1}$

9 A landscape gardener is working on a rectangular garden of width 9 m and length 10 m . He wants to divide the garden by a path of width $x \mathrm{~m}$ into lawn, vegetables and decking areas, as shown in the diagram below.

The area of the path is one fifth of the area of the garden.

Form an equation in terms of x and solve it to find the width of the path.

Answer \qquad m

10 In the rhombus ABCD below, $\overrightarrow{\mathrm{AB}}$ represents the vector \mathbf{b} and $\overrightarrow{\mathrm{AC}}$ represents the vector \mathbf{c}.
M is the midpoint of $A D$.

(i) Express each of the following vectors in terms of \mathbf{b} and \mathbf{c}, simplifying your answers as far as possible:
(a) $\overrightarrow{\mathrm{BC}}$
\qquad
(b) $\overrightarrow{\mathrm{BD}}$
\qquad
(c) $\overrightarrow{\mathrm{MB}}$

Answer \qquad
(ii) The point F is on AB produced such that $\mathrm{AF}=3 \mathrm{AB}$.
(a) Find the vector $\overrightarrow{\mathrm{CF}}$

Answer \qquad
(b) Hence show that CF is parallel to MB and twice as long.

[1]

11 (a) Solve the equation

$$
3^{2-3 x}=4
$$

Answer \qquad
(b) Solve the equation

$$
\log _{2 x} 36=2
$$

(c) If $\log _{3} 4=m$ and $\log _{3} 5=n$, express in terms of m and n
(i) $\log _{3} 20$

Answer
(ii) $\log _{3} 60$

12 A charity has organised a sponsored abseil from the roof A of the Majestic Hotel, AB. Fundraisers will abseil from the roof A to a balcony X, vertically below A .

An observer is at the point D on the roof of the Grand Hotel, DE, which is of height 25 m .

Another observer is at the point C on the horizontal ground, $\mathrm{BE}, 20 \mathrm{~m}$ from the point E .

The angles $A \hat{C D}, A \hat{D} X$ and $A \hat{D C}$ were measured as $84^{\circ}, 34^{\circ}$ and 71° respectively, as shown in the diagram below.
(i) Find the size of the angle CAD .

Answer \qquad
(ii) Calculate the distance CD.
\qquad m

(iii) Calculate the distance AD.
\qquad m [3]
(iv) Given that the distance XD is 73.25 m , calculate AX , the distance abseiled.

Answer \qquad

13 A curve is defined by the equation $y=x^{3}-3 x^{2}+2 x$
(i) Find the equation of the straight line T which is the tangent to this curve at the point $(3,6)$.
(ii) Find the equation of the straight line N which is the normal to this curve at the point $(1,0)$.

Answer
(iii) Hence find the coordinates of the point where the lines T and N meet.

Answer

14 A wholesaler provides bags of coal, bags of logs and bags of peat briquettes, priced at $£ x$, $£ y$ and $£ z$ per bag respectively, to three local garages.

Garage A purchases 150 bags of coal, 100 bags of logs and 50 bags of peat briquettes at a total cost of $£ 2250$
(i) Show that x, y and z satisfy the equation

$$
3 x+2 y+z=45
$$

Garage B purchases 195 bags of coal, 170 bags of logs and 75 bags of peat briquettes at a total cost of $£ 3195$
(ii) Show that x, y and z also satisfy the equation

$$
39 x+34 y+15 z=639
$$

Garage C purchases 150 bags of coal, 75 bags of logs and 60 bags of peat briquettes at a total cost of $£ 2130$
(iii) Show that x, y and z also satisfy the equation

$$
10 x+5 y+4 z=142
$$

(iv) Solve these equations, showing clearly each stage of your solution, to find the cost of a bag of coal, a bag of logs and a bag of peat briquettes.

15 The sketch below shows the curve with equation $y=x^{2}-2 x-3$

(i) Find the x-coordinate of the minimum point M .
\qquad

(ii) Hence find the area of the shaded region shown.

16 A curve is defined by the equation $y=x^{3}-5 x^{2}+8 x$
(i) Find the coordinates of the turning points of the curve.
(ii) Identify each turning point as either a maximum or a minimum point. You must show working to justify your answers.

Answer
(iii) Given that the curve passes through the point $(0,0)$, use your answers from parts (i) and (ii) to sketch the curve $y=x^{3}-5 x^{2}+8 x$ on the axes below.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	

Total Marks

