Gateway Science B Equations

Science J640 Unit B621 (covering module P1) - Foundation Unit B622 (covering module P2) - Foundation

efficiency = $\frac{\text{useful energy output}}{\text{total energy input}}$

wave speed = frequency x wavelength

power = voltage x current

energy (kilowatt hours) = power (kw) x time (h)

Science J640 Unit B621 (covering module P1) - Higher Unit B622 (covering module P2) - Higher

efficiency = $\frac{\text{useful energy output}}{\text{total energy input}}$

energy = mass x specific heat capacity x temperature change

energy = mass x specific latent heat

fuel energy input = waste energy output + electrical energy output

power = voltage x current

energy supplied = power x time

energy (kilowatt hours) = power (kw) x time (h)

wave speed = frequency x wavelength

Gateway Additional Science B Equations

Additional Science J641 Unit B623 (covering module P3) – Foundation Unit B624 (covering module P4) – Foundation

speed = $\frac{\text{distance}}{\text{time taken}}$

acceleration $=\frac{\text{change in speed}}{\text{time taken}}$

force = mass x acceleration

work done = force x distance

power = $\frac{\text{work done}}{\text{time}}$

resistance = $\frac{\text{voltage}}{\text{current}}$

Additional Science J641	Unit B623 (covering module P3) – Higher
	Unit B624 (covering module P4) – Higher

speed = $\frac{\text{distance}}{\text{time taken}}$

acceleration $=\frac{\text{change in speed}}{\text{time taken}}$

force = mass x acceleration

work done = force x distance

$$power = \frac{work \ done}{time}$$

kinetic energy = $\frac{1}{2}$ mv²

potential energy = mgh

weight = mass x gravitational field strength

resistance = $\frac{\text{voltage}}{\text{current}}$

Gateway Physics B Equations

Physics B J645 Unit B651 (covering modules P1, P2, P3) – Foundation efficiency = $\frac{\text{useful energy output}}{\text{total energy input}}$ wave speed = frequency x wavelength power = voltage x current energy (kilowatt hours) = power (kw) x time (h) speed = $\frac{\text{distance}}{\text{time taken}}$ acceleration = $\frac{\text{change in speed}}{\text{time taken}}$ force = mass x acceleration work done = force x distance power = $\frac{\text{work done}}{\text{time}}$

Physics B J645 Unit B651 (covering modules P1, P2, P3) – Higher

efficiency = $\frac{\text{useful energy output}}{\text{total energy input}}$

energy = mass x specific heat capacity x temperature change

energy = mass x specific latent heat

fuel energy input = waste energy output + electrical energy output

power = voltage x current

energy supplied = power x time

energy (kilowatt hours) = power (kw) x time (h)

wave speed = frequency x wavelength

speed = $\frac{\text{distance}}{\text{time taken}}$

acceleration $=\frac{\text{change in speed}}{\text{time taken}}$

force = mass x acceleration

work done = force x distance

 $power = \frac{work \ done}{time}$

kinetic energy = $\frac{1}{2}mv^2$

potential energy = mgh

weight = mass x gravitational field strength

Physics B J645 Unit B652 (covering modules P4, P5, P6) – Foundation

resistance =
$$\frac{\text{voltage}}{\text{current}}$$

v = u + at
s = $\frac{(u + v)}{2}$ t

momentum = mass × velocity

$$\frac{V_{p}}{V_{s}} = \frac{N_{p}}{N_{s}}$$

Physics B J645 Unit B652 (covering modules P4, P5, P6) – Higher

resistance = $\frac{\text{voltage}}{\text{current}}$ v = u + at $s = \frac{(u + v)}{2}t$ $v^2 = u^2 + 2as$ $s = ut + \frac{1}{2}at^2$

momentum = mass x velocity

force = change in momentum	
time	
refractive index = $\frac{\text{speed of light in vacuum}}{\text{speed of light in medium}}$	
refractive index = n = $\frac{\sin i}{\sin r}$	i = incident angle r = reflected angle
$\sin c = \frac{n_r}{n_i}$	c = critical angle n_r = refractive index of less dense material n_i = refractive index of more dense material
magnification = $\frac{\text{image size}}{\text{object size}}$	
$Vout = Vin \times \frac{R_2}{(R_1 + R_2)}$	
$\frac{V_{p}}{V_{s}} = \frac{N_{p}}{N_{s}}$	

 $V_{\rm p}I_{\rm p}=V_{\rm s}I_{\rm s}$