Candidate	Centre	Candidate	
Name	Number	Number	
		0	

GCSE

294/02

ELECTRONICS
MODULE TEST E2
HIGHER TIER

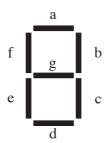
P.M. FRIDAY, 6 June 2008 45 minutes

For Examiner's use only

ADDITIONAL MATERIALS

In addition to this examination paper you may need a calculator.

INSTRUCTIONS TO CANDIDATES


Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** the questions in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Answer all questions

1. The diagram shows the arrangement of the LEDs in a seven-segment display.

Complete the following table.

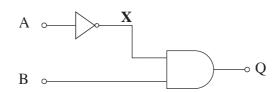
Segments					Number			
a	b	с	d	e	f	g	Displayed	
1	1	1					7	
1	1	1	1	0	0	1		

[2]

2. (a) Complete the truth tables for the following logic gates:

(i) a **NOT** gate [1]

Input	Output
0	
1	

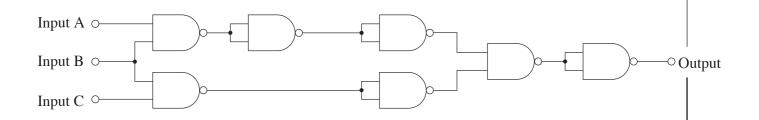

(ii) an AND gate

[1]

Inp	Output	
0	0	
0	1	
1	0	
1	1	

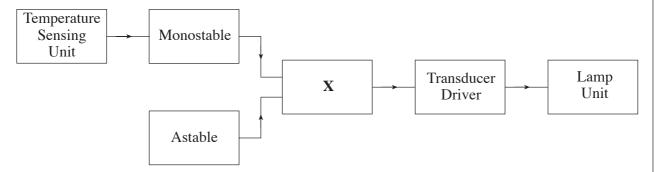
[2]

(b) Complete the following truth table for this system.


Input A	Input B	X	Q
0	0		
0	1		
1	0		
1	1		

(c) (i) Complete the diagram to show how a NAND gate can be made to behave as a NOT gate. [1]

(ii) Draw a diagram to show the NAND gate equivalent of an AND gate [1]


(iii) Here is a logic system built using only NAND gates.

Cross out all redundant gates

[1]

3. Here is the block diagram for a freezer alarm.

The lamp does not light when the freezer is cold enough.

The lamp flashes on and off repeatedly when the freezer is too hot.

The monostable outputs a logic 1 signal for 30 s when the freezer gets too hot.

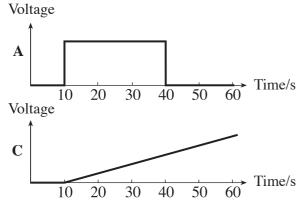
(a) What type of logic gate is required in block **X**?

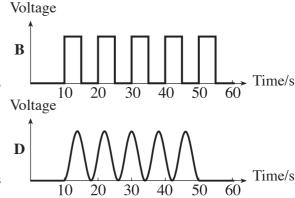
[1]

Answer

(b) What is the job of the astable in this system?

Choose one of the following answers:


- A. It makes the Lamp Unit pulse on and off over and over again.
- **B.** It outputs a steady logic 1 signal when the freezer gets too hot.
- **C.** It keeps the Lamp Unit switched on for 30s and then switches it off automatically.
- **D.** It buffers the output of the monostable, providing enough current to light the lamp.


[1]

Answer

(c) The temperature in the freezer rises and triggers the monostable.

Which of the following shows the output signal from the monostable?

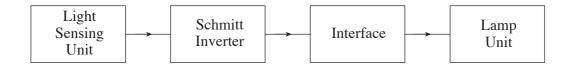
[1]

[2]

Answer

(d) The monostable time delay can be found from the formula

T = 1.1 RC (where T is in seconds, R is in MΩ and C is in μ F)


This can be re-arranged into the form:

$$\mathbf{R} = \frac{\mathbf{T}}{1.1\mathbf{C}}$$

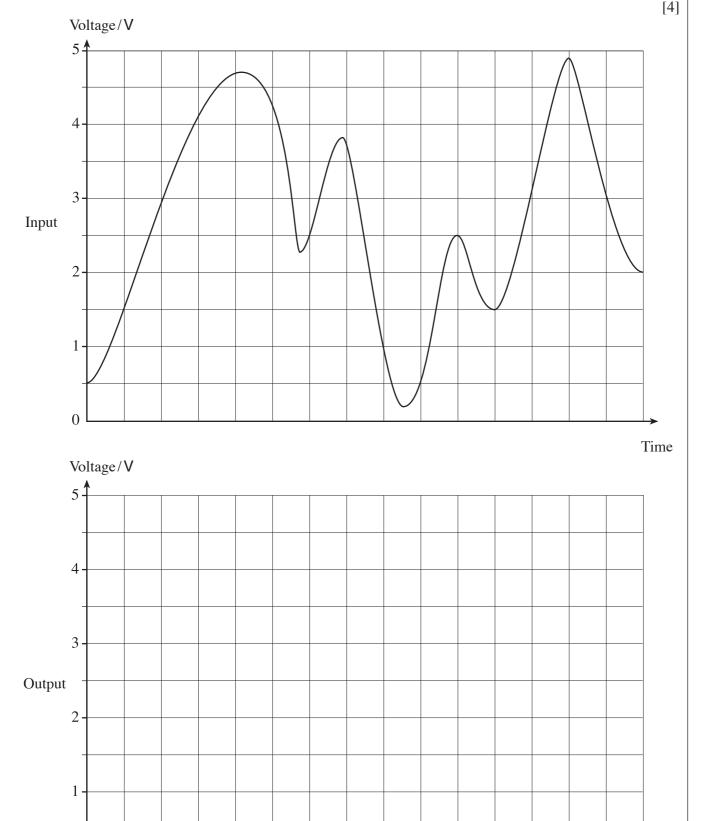
The monostable circuit uses a 470 µF capacitor.

Calculate the value of resistance needed to produce a time delay of 30 s.

4. The block diagram shows the design of a security light, which turns on automatically when it gets dark.

- (a) The Light Sensing Unit gives out a logic 0 signal in the dark.
 - (i) The Schmitt Inverter inverts the signal from the Light Sensing Unit.

	Explain what this sentence means.	[1]
(ii)	What is the other use of the Schmitt Inverter in this system?	[1]


(b) Here is part of a data sheet for a Schmitt Inverter:

When connected to 5 V supply:

- Logic 0 = 0 V
- Logic 1 = 5 V
- The output changes from logic 1 to logic 0 when a **rising** input voltage reaches 3 V
- The output changes from logic 0 to logic 1 when a **falling** input voltage reaches 1 V

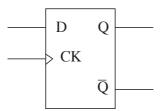
The input signal for the Schmitt Inverter is shown below.

Use the axes provided to draw the resulting output signal produced by the Schmitt Inverter.

Time

0

(i)	Complete the circuit diagram to show how a transistor switch can be used to inter the Schmitt Inverter to the bulb.	rface [3]
	9V ~	
fron Sch	mitt — —	
	о	
(ii)	A thyristor is often used as an interface device. Why is it not suitable in this system	m? [1]
	Sign fror Sch Invo	Signal from Schmitt Inverter OV

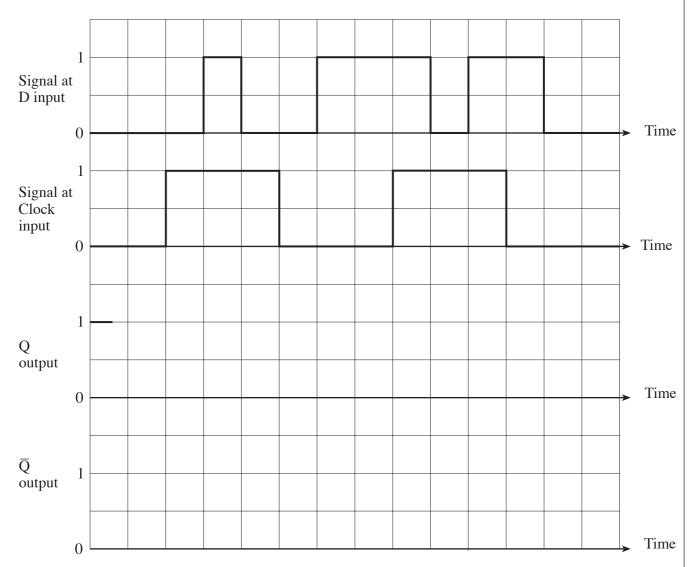

5. An electronic system has two input sensors A and B, and three outputs P, Q and R. The truth table showing how the input sensors control the outputs is shown below.

В	A	P	Q	R
0	0	1	1	1
0	1	1	1	0
1	0	0	1	0
1	1	0	0	0

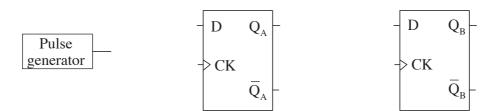
(a)	Which of the follow	ving expressions cor	rectly describes t	he P output?	[1]
	\mathbf{A}	NOT A	В	NOT B	
	Answer				
(b)	Which of the follow	ing expressions cor	rectly describes t	he Q output?	[1]
	A AND B	A OR B	A NAND I	B A NOR B	
	Answer				
(c)	Complete the follow using a single logic	0 0	w how the R outp	out can be obtained	[1]
		A ∘ B ∘	∞ R		
(d)	Another electronic devices from input	•	emory IC rather	than logic gates to con-	trol output
	The memory IC has	4 address pins and	8 data pins.		
	(i) How many ou	itputs can be connec	cted to the memor	ry IC?	[1]
	(ii) How many m	emory locations are	there on the men	nory IC?	[1]

(294-02)

6. (a) The D-type flip-flop can be used for data transfer, under the control of the clock. The D-type flip-flop is rising-edge triggered.

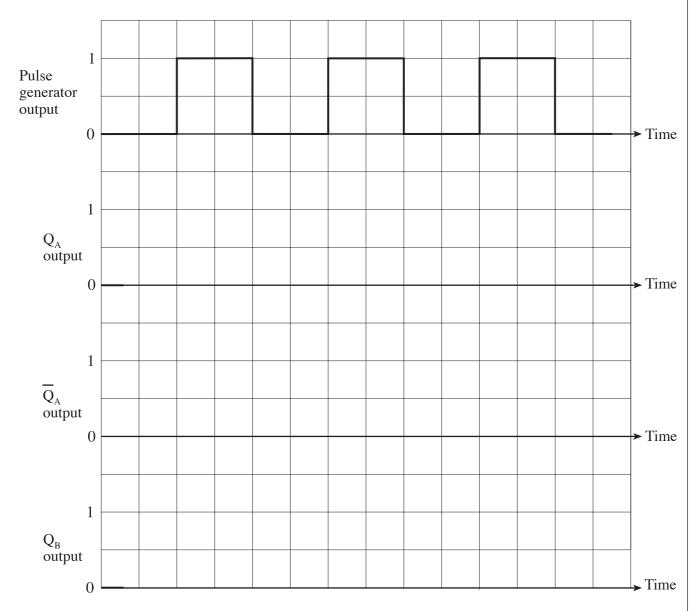

The signal shown in the first graph is sent into the D input.

The second graph shows the pulses sent into the clock input.


Use the axes provided to draw the signals at the Q and \overline{Q} outputs.

The Q output is initially at logic 1.

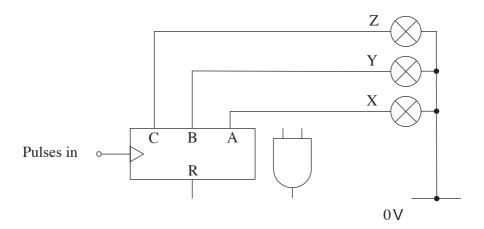
[3]



- (b) A binary counter can be built from a series of D-type flip-flops, or can be obtained as a dedicated counter IC.
 - (i) The following diagram shows a pulse generator and two **rising-edge** triggered D-type flip-flops

Draw on the diagram the connections required to make a 2-bit up-counter, connected to the pulse generator. [3]

(ii) The graph shows clock pulses applied to the 2-bit up-counter. Use the axes provided to draw the signals which would appear at the outputs of the two flip-flops. [3] Initially the $Q_{\scriptscriptstyle A}$ output and the $Q_{\scriptscriptstyle B}$ output are both at logic 0.


(c) The next diagram shows a counter IC, used to control a lighting sequence.

The sequence is given in the table.

Pulse	Lamp State				
number	Z	Y	X		
0	Off	Off	Off		
1	Off	Off	On		
2	Off	On	Off		
3	Off	On	On		
4	On	Off	Off		
5	On	Off	On		
6	Off	Off	Off		
7	Off	Off	On		
Sequence continues					

A lamp is switched on when the corresponding counter output is logic 1.

A partly completed circuit diagram is shown below.

Complete the circuit diagram by adding suitable connections from the counter to the AND gate. [2]