Candidate Name	Centre Number		
		0	

GCSE

293/02

ELECTRONICS
MODULE TEST E1
HIGHER TIER

P.M. FRIDAY, 23 May 2008 45 minutes

For Examiner's use only		
Total Mark		

ADDITIONAL MATERIALS

In addition to this examination paper you may need a calculator.

INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** the questions in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

INFORMATION SHEET

This information may be of use in answering the questions.

1. Resistor Colour Codes

BLACK	0	GREEN	5
BROWN	1	BLUE	6
RED	2	VIOLET	7
ORANGE	3	GREY	8
YELLOW	4	WHITE	9

The fourth band colour gives the tolerance as follows:

GOLD ± 5%

SILVER ± 10%

2. Preferred Values for Resistors

E 12 SERIES OF PREFERRED VALUES

10; 12; 15; 18; 22; 27; 33; 39; 47; 56; 68; 82 and multiples thereafter

3. Resistance =
$$\frac{\text{voltage}}{\text{current}}$$
 ; $R = \frac{V}{I}$

- **4.** Effective resistance, R, of two resistors R_1 and R_2 in series is given by $R = R_1 + R_2$.
- 5. Effective resistance, R, of two resistors R₁ and R₂ in parallel is given by $R = \frac{R_1 R_2}{R_1 + R_2}$.

7. Power = voltage × current;
$$P = VI = I^2R = \frac{V^2}{R}$$
.

8. LED The forward voltage drop across a LED is 2 V.

9. Transistors

(i) Current gain =
$$\frac{\text{Collector current}}{\text{Base current}}$$
; $h_{\text{FE}} = \frac{I_{\text{C}}}{I_{\text{B}}}$

(ii) The forward voltage drop across the base emitter junction is 0.7 V.

Answer all questions in the spaces provided.

1. The diagram shows a $4.7 k\Omega$ resistor.

(a) Change $4.7 \,\mathrm{k}\,\Omega$ into ohms.

Band 1

[1]

(b) Use the resistor colour code to select the colours of:

[3]

Band 3

A **different** resistor is shown below

Band 2

(i) What is its resistance?

 Ω [2]

(ii) Use the tolerance band to calculate the maximum value of resistance for this resistor.

1]

2. The circuit diagram shows a voltage divider.

- (a) What is the combined resistance of R_1 and R_2 ? [1]
- (b) Calculate voltage V_2 . [2] Hint: The equation is given on page 2.

(c) A second $4k\Omega$ resistor is connected in parallel with R_2 .

What is the combined resistance of the two $4k\Omega$ resistors? [1]

3. Here is the circuit diagram for a light-sensing unit.

A bright light is now shone on the LDR. As a result, what happens to:

- (a) the resistance of the LDR? [1]
- (b) the voltage V_{LDR} across the LDR? [1]
- (c) the output voltage V_{OUT} ? [1]
- (d) Complete the circuit diagram for a temperature sensing unit that has an output voltage which decreases when the temperature rises. [3]

4. The diagram shows part of a circuit.

(a)	Calculate current I ₁ .	[1
(b)	Calculate current I ₂ .	[1
(c)	Calculate the voltage across resistor R_1 . Hint: The equation is given on page 2.	[2

BLANK PAGE

(293-02) **Turn over.**

5. The diagram shows the pinout for a comparator IC.

- (a) The comparator output saturates at 12 V and 0 V.
 - (i) The non-inverting input is set to 4 V.

Write down a voltage at the inverting input that will make the output voltage 12 V. [1]

(ii) The inverting input is set to 6V.

Write down a voltage at the non-inverting input that will make the output voltage 0 V. [1]

 $\begin{array}{c|c} 6V & \hline \\ & \\ & \\ \end{array}$

A moisture sensor is placed in a plant pot. It is connected to the comparator, which lights an LED when the soil in the plant pot is too dry.

Part of the circuit diagram is shown below.

- Add component(s), connected to provide a variable voltage at the other input of the (i) comparator.
- The LED should light when the moisture sensor is **too dry**, giving it a high resistance. Add '+' and '-' labels to the comparator to identify the non-inverting and inverting inputs.
- The LED in the moisture sensor is lit, and has a 2V voltage drop across it. The current must (c) be limited to a maximum of 20 mA.
 - (i) What is the voltage drop across the resistor R?[1]
 - What is the maximum current through resistor? (ii)
 - Calculate the resistance of resistor R. (iii) [1]
 - Use the list of preferred values on page 2.
- What is the advantage of using a comparator rather than a transistor switch for the moisture detector?

(*d*)

6. Here is the block diagram for a burglar alarm.

The alarm is triggered when a burglar stands on a pressure pad (the switch unit.). The buzzer then beeps on and off repeatedly.

- (a) Subsystem X makes the buzzer beep on and off repeatedly.
 What is the name for this subsystem? [1]
- (b) Subsystem Y combines the signals from subsystem X and the switch unit so that the buzzer pulses only when the burglar stands on the pressure pad.

What is the name for this subsystem?

......[1]

- (c) The design is faulty because the buzzer stops beeping as soon as the burglar steps off the pressure pad.
 - (i) What additional subsystem is needed to make sure that the buzzer continues to beep on and off repeatedly even after the burglar steps off the pressure pad? [1]

.....

(ii) Redraw the block diagram including this subsystem in its correct position. [1]

7. The circuit diagram shows a transistor switch used as a transducer driver.

(a)	The bulb is rated at 6 V 180 mA.	
	Calculate the power dissipated in the bulb when it is switched on fully.	[1]

(b) A transistor with a current gain (h_{FE}) of 90 is used in this circuit. The input voltage V_1 is increased until the transistor is **just saturated**.

Calculate:

Calculate.		
(i)	the base current $\boldsymbol{I}_{\mathrm{B}}$;	[2]
(ii)	the voltage across the base resistor;	[2]
(iii)	the new input voltage V_1 .	[1]
•••••		•••••