Candidate	Centre	Candidate
Name	Number	Number
		0

GCSE

293/01

ELECTRONICS
MODULE TEST E1
FOUNDATION TIER

P.M. FRIDAY, 23 May 2008 45 minutes

For Examiner's use only			
Total Mark			

ADDITIONAL MATERIALS

In addition to this examination paper you may need a calculator.

INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** the questions in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

INFORMATION SHEET

This information may be of use in answering the questions.

1. Resistor Colour Codes

BLACK	0	GREEN	5
BROWN	1	BLUE	6
RED	2	VIOLET	7
ORANGE	3	GREY	8
YELLOW	4	WHITE	9

The fourth band colour gives the tolerance as follows:

 $GOLD \pm 5\%$

SILVER ± 10%

2. Preferred Values for Resistors

E 12 SERIES OF PREFERRED VALUES

10; 12; 15; 18; 22; 27; 33; 39; 47; 56; 68; 82 and multiples thereafter

3. Resistance =
$$\frac{\text{voltage}}{\text{current}}$$
 ; $R = \frac{V}{I}$

4. Effective resistance, R, of two resistors R_1 and R_2 in series is given by $R = R_1 + R_2$.

5. Voltage Divider

- **6.** Power = voltage \times current; P = VI
- 7. LED The forward voltage drop across a LED is 2 V.

8. Transistors

The forward voltage drop across the base emitter junction is $0.7 \,\mathrm{V}$.

[3]

Answer all questions in the spaces provided.

1.	Electronic subsystems can be classed as either input, process or output subsystems.
	For example, a transducer driver is a process subsystem.

Here are five subsystems:

latch lamp unit AND gate switch unit solenoid unit

Process

Transducer driver

Add the name of each subsystem to the correct column of the table.

Output

2	Here i	6 3	liet	$\alpha f \epsilon$	lectr	onic	compo	nente

Input

push switch diode thermistor LED

(a) Which component has this symbol?

[1]

(b) Which component has this symbol?

Answer

Answer

[1]

(c) Which component would you use to sense temperature changes?

Answer

[1]

3. (a) How many milliamps are there in 1 amp?

(b) How many ohms are there in 1 megohm?

(c) The diagram shows a $4.7 k\Omega$ resistor.

(i) Change $4.7k\Omega$ into ohms.

[1]

(ii) Use the resistor colour code to select the colours of:

[3]

Band 1

 10Ω

 10Ω

Band 2

Band 3

(d) Which of the following, **A**, **B** or **C** has the smallest resistance? [1]

 \mathbf{B} \mathbf{C} 10Ω 10Ω

4. Here are four circuits.

(a) What is the power used in lamp A?

[1]

Choose your answer from the following list:

 $0.3\,mW$ $1.2\,mW$ $2.4\,mW$

Answer

(b) Which lamp, A, B, C or D, will use the most power? [1]

30mW

5. The circuit diagram below shows a voltage divider.

- (a) Which voltage will be bigger, V_1 or V_2 ?
- (c) What is the combined resistance of R_1 and R_2 ? [1]
- (d) Calculate voltage V_2 . Hint: The equation is given on page 2. [2]

6. Here is the circuit diagram for a light-sensing unit.

A bright light is now shone on the LDR. As a result, what happens to:

 $(a) \quad \text{the resistance of the LDR?} \qquad \qquad [1]$ $(b) \quad \text{the voltage V_{LDR} across the LDR?} \qquad \qquad [1]$ $(c) \quad \text{the output voltage V_{OUT}?} \qquad \qquad [1]$

7. In the diagram, the $2k\Omega$ resistor has a current of $5\,\text{mA}$ flowing into it.

Calculate the voltage V_1 across the $2k\Omega$ resistor.	[2
Hint: The equation is given on page 2.	
1 0 1 0	

8.

<i>(a)</i>	Write down the value of current I_2 .	 [1]
(b)	Calculate current I ₃ .	[1]
(c)	Which is the bigger resistor, R_1 or R_2 ?	
	Give a reason for your choice.	[1]

9. The diagram shows the pinout for a comparator IC.

- (a) What is the pin number of:
 - (i) the inverting input?

.....[1]

(ii) the output?

-[1]
- (b) The comparator output saturates at 12 V and 0 V.
 - (i) The non-inverting input is set to 4 V.

Write down a voltage at the inverting input that will make the output voltage 12 V. [1]

(ii) The inverting input is set to 6V.

Write down a voltage at the non-inverting input that will make the output voltage 0 V.

[1]

10. Here is the block diagram for a burglar alarm.

The alarm is triggered when a burglar stands on a pressure pad (the switch unit). The buzzer then beeps on and off repeatedly until the reset switch is pressed.

(a)	What is th	e job of the latch in	this system?			[1]
•••••						
(b)	Subsystem	1 X causes the buzz	zer to beep on ar	nd off repeatedly.		
		e name for this sub our answer from the		of subsystems:		
	OR gate	Comparator	AND gate	Delay unit	Pulse Generator	
	Answer					[1]
(c)		Y combines the si the latch is switch		system X and the	latch so that the buzze	r pulses
		e name for this sub our answer from the		of subsystems:		
	OR gate	Comparator	AND gate	Delay unit	Pulse Generator	
	Answer					[1]

11. The circuit diagram shows a transistor switch used as a transducer driver.

- (a) Which leg of the transistor, X, Y or Z, is the base?
- (b) (i) The transistor is just saturated when the input voltage V_1 is $2\cdot 0\,\text{V}$. Complete the table by giving the voltage V_3 , and the state of the bulb for the given values of input voltage V_1 .

Input voltage V_1	V ₃	Bulb – On / Off?
0·2 V		
2·0 V		