Candidate Name	Centre Number	Candidate Number

WELSH JOINT EDUCATION COMMITTEE

General Certificate of Secondary Education

CYD-BWYLLGOR ADDYSG CYMRU

Tystysgrif Gyffredinol Addysg Uwchradd

294/01

ELECTRONICS

MODULE TEST E2

FOUNDATION TIER

P.M. FRIDAY, 12 January 2007

(45 minutes)

For Examiner's use only

ADDITIONAL MATERIALS

In addition to this examination paper you may need a calculator.

INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

No certificate will be awarded to a candidate detected in any unfair practice during the examination.

Answer all questions.

1. Here is a list of electronic sub-systems:

	motor	moisture sensor	MOSFET	push switch
Inser	t the correct sub-sys	stem to complete the fo	llowing statement	s.
(a)	Α	is	an analogue inpu	t sub-system;
(b)	A	is	a processing sub-	system;
(c)	A	is	an output sub-sys	tem.

2. The pin-out diagram below shows a logic IC.

		[1]
	OR NAND NOT SCHMITT INVERTER	
	Choose from the following list:	
(e)	What is the name given to the type of logic gate contained in this IC?	
(d)	Give the number of the pin connected to the output of gate Y	[1]
(c)	Label pin 1 with the number 1.	[1]
(b)	How many inputs does each gate have?	[1]
(a)	How many logic gates are contained in this IC?	[1]

3. The diagram shows the arrangement of the LEDs in a seven-segment display.

Complete the following table, which shows the number/letter displayed when different segments are lit.

Segment				Letter/Number displayed			
a	b	С	d	e	f	g	
1	0						F
							3
0	1	1	0	1	1	1	

[3]

4. The diagram shows a pulse generator and a D-type flip-flop.

(a) The D-type must be connected so that it performs a *divide-by-two* action on pulses from the pulse generator.

Draw the two connections needed to do this.

[2]

(b) The frequency of the signal at the Q output is 200 Hz.

What is the frequency of the pulse generator?

[1]

(294/01)

5. Here is the diagram for an astable circuit based on a 555 timer IC.

- (a) Name the component labelled **P**. [1]
- (b) Which of the following is the output waveform produced by an astable circuit?

Answer

[1]

(c)	(i)	The value of \mathbf{R}_2 is increased. What happens to the frequency of the output signal?
	(ii)	The value of component \mathbf{P} is increased. What happens to the frequency of the output signal?
		[2]

(294/01) **Turn over.**

6. (a) Here is a system that controls a lamp on a stairway. The lamp comes on when the switch is pressed *but only* if it is dark. The lamp switches off automatically after 1 minute.

You can choose any of the following sub-systems to use for blocks A, B and C:-

Temperature sensing unit

Light sensing unit

OR gate

Delay unit

Pulse unit

AND gate

Which sub-system is

- (i) a suitable unit for block A?
- (ii) a suitable unit for block **B**?
- (b) The above system is an example of electronics being used in the home.
 - (i) Describe **another** use of electronics in the home.
 - (ii) Describe **one** benefit of electronics to a hospital patient.

[2]

- 7. (a) Write the name of each logic gate in the space provided and complete the truth tables.
 - (i) Gate 1

A	Q
0	
1	

Name of gate:

(ii) Gate 2

A	В	Q
0	0	
0	1	
1	0	
1	1	

Name of gate: [4]

(b) Complete the truth table for the following logic system.

A	В	С	Q
0	0		
0	1		
1	0		
1	1		

[2]

8. A logic system has two input sensors A and B, and three outputs P, Q and R. The truth table showing how the input sensors control the outputs is shown below.

В	A	P	Q	R
0	0	0	1	1
0	1	0	0	1
1	0	0	0	0
1	1	1	0	0

(a)	(i)	Look at the P output. Which type of logic gate will provide this?	
		Logic gate is	
	(ii)	Look at the Q output. Which type of logic gate will provide this?	
		Logic gate is	
	(iii)	Look at the R output. It is the inverse of one of the inputs. Write down an expression to describe this output.	
		R =	
			[3]
<i>(b)</i>		have a selection of AND, OR, NOT, NOR and NAND gates available. v a labelled diagram to show how the logic system can be made.	
	A	-∞ P	
		Q	
	В	o—	
		—∘ R	
			[3]
(c)	adva	emory IC could be used to give the same output as the logic system. Give ntage, other than cost, of designing an electronic system using a memory IC instead gates.	
•••••			

9. A company packs DVDs into boxes, five to a box.

Part of the packing system is shown in the following block diagram.

- The counting sub-system contains a 3-bit binary counter and an AND gate
- The system must reset when the **fifth** DVD passes the light sensor
- Taking the reset pin to logic 1 resets the counter
- Bit A of the counter is the least significant bit
- The counter is initially reset
- (a) Complete the diagram below to show how the AND gate is connected to the counter to allow it to reset correctly.

[3]

(b) Why is a Schmitt Inverter needed in **this** system? [1]