Surname
Other Names

Centre Number	Candidate Number
0	

P.M. TUESDAY, 21 June 2016

1 hour

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions in the spaces provided in this booklet.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	4	
2.	3	
3.	2	
4.	4	
5.	3	
6.	2	
7.	3	
8.	3	
9.	2	
10.	3	
11.	3	
12.	3	
13.	5	
14.	5	
15.	2	
16.	2	
17.	2	
18.	3	
19.	6	
Total	60	

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

INFORMATION SHEET FOR UNIT E2

This information may be of use in answering the questions.

1. Resistor Colour Codes

BLACK	0	GREEN	5
BROWN	1	BLUE	6
RED	2	VIOLET	7
ORANGE	3	GREY	8
YELLOW	4	WHITE	9

The fourth band colour gives the tolerance as follows:

GOLD	\pm	5%
SILVER	\pm	10%

2. Preferred Values for Resistors - E24 series
$10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,43,47,51,56,62,68,75,82,91$.
3. Resistance $=\frac{\text { voltage }}{\text { current }} ; \mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}$.
4. Effective resistance, R, of two resistors R_{1} and R_{2} in series is given by $R=R_{1}+R_{2}$.
5. Effective resistance, R, of two resistors R_{1} and R_{2} in parallel is given by $R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$.
6. Voltage Divider

7. Power $=$ voltage \times current; $\quad \mathrm{P}=\mathrm{VI}=\mathrm{I}^{2} \mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$.
8. LED The forward voltage drop across a LED is 2 V .
9. NPN Transistors
(i) Current gain $=\frac{\text { Collector current }}{\text { Base current }} ; \mathrm{h}_{\mathrm{FE}}=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}}$.
(ii) The forward voltage drop across the base emitter junction is 0.7 V .

10. Amplifiers

Voltage gain: $\quad A=\frac{V_{\text {OUT }}}{V_{\text {IN }}}$

Non-inverting amplifier: $\quad \mathrm{A}=1+\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{1}}$

Inverting amplifier:

$$
A=-\frac{R_{F}}{R_{I N}}
$$

Summing amplifier:

$$
\mathrm{V}_{\mathrm{OUT}}=-\mathrm{R}_{\mathrm{F}}\left(\frac{\mathrm{~V}_{1}}{\mathrm{R}_{1}}+\frac{\mathrm{V}_{2}}{\mathrm{R}_{2}}+\ldots\right)
$$

Answer all questions.

1. (a) The boxes on the left give the names of two sub-systems.

The boxes on the right give descriptions of three applications.
Draw a line to link each sub-system to its correct application.

When a burglar alarm is switched on a warning LED flashes on and off, repeatedly.

Monostable

A street light comes on when it gets dark and turns off when it gets light.

Astable
The buzzer in a shop comes on for 10 seconds when someone steps on a pad in the doorway and then goes off automatically.
(b) Here are four signals generated by monostable circuits.

(i) Which signal has the longest period?
(Tick ($/$) the correct answer.)

A \square
B \square
C \square
D \square
(ii) Which signal has the largest amplitude? (Tick ($/$) the correct answer.)

A \square
B \square
C \square
D \square
2. (a) One of the following circuits is an astable circuit, one a latch and one a monostable.

Which one is an astable circuit?
(Tick (\checkmark) the correct answer.)

A \square
B \square
C \square
(b) Here are three astable signals.

(i) Which has the highest frequency?
(Tick (\checkmark) the correct answer.)

A \square
B \square
C \square
(ii) What is the amplitude of signal \mathbf{A} in volts?
(Tick ($/$) the correct answer.)

1 \qquad
2 \square
3 \square
4 \square
3. The circuit diagram shows a time delay circuit. When the switch is closed, the output stays at a high voltage for a while and then drops to a lower value.

(a) Which one of the following sets of resistor/capacitor values keeps the output high for the longest time? (Tick (\checkmark) the correct answer.)

Set	Resistor	Capacitor
A	$10 \mathrm{k} \Omega$	$220 \mu \mathrm{~F}$
B	$100 \mathrm{k} \Omega$	$220 \mu \mathrm{~F}$
C	$10 \mathrm{k} \Omega$	 D
	$100 \mathrm{k} \Omega$	$22 \mu \mathrm{~F}$

(b) Which one of the following statements gives the best explanation for the purpose of the NOT gate in this circuit? (Tick (\checkmark) the correct answer.)

Without the NOT gate, the time delay would be much shorter. \square
It produces an analogue output voltage. \square
It ensures that the output current does not affect the time delay. \square
It inverts the signal from the switch. \square
4. (a) Which of the following statements describes the action of the rising-edge triggered D-type flip-flop? (Tick (\checkmark) the correct answer.)

When the clock signal rises from logic 0 to logic 1:
the Q output copies the logic level present on the clock input.

the Q output copies the logic level present on the data input.
the $\overline{\mathrm{Q}}$ output copies the logic level present on the clock input.
the $\overline{\mathrm{Q}}$ output copies the logic level present on the data input.
(b) A rising-edge triggered D-type flip-flop receives the clock and data signals shown in the graphs.

Complete the graphs to show the Q and $\overline{\mathrm{Q}}$ outputs.
The Q output starts at logic 0 .

5. Here is the block diagram for a single digit decimal counting system.

(a) Which of the following is the best reason for using a BCD counter for this application? (Tick (\checkmark) the correct answer.)

The system displays only one digit. \square
It resets automatically on the tenth pulse. \square
It is the simplest, as it just uses logic 0's and logic 1's.

The system is based on the decimal numbering system. \square
(b) Which one of the following sub-systems is the best to use for ' X ' in the block diagram? (Tick (\checkmark) the correct answer.)

(c) The diagram shows a 7-segment display.

A logic 1 signal makes a segment light up.

Complete the table by adding either ' 0 ' or ' 1 ' to show the signals needed to create the character shown.

Segments						Character displayed	
a	b	c	d	e	f	g	
							3

6. The boxes on the left give the names of two interface devices.

The boxes on the right give three descriptions.
Draw a line to link each device to its correct description.

7. Here is a flowchart for part of a control system.

This part of the system:

- waits until a switch is pressed
- then it adds 1 to a variable called 'total'
- it checks to see if 'total' has reached 12
- if it has, it resets the counter
- if it has not, it goes back to check the switch again.

The flowchart contains the following four instructions:
Instruction A Is 'total' = 12?
Instruction B Is the switch pressed?
Instruction C Add 1 to 'total'
Instruction D Reset 'total'.
(a) Which of these instructions will be found in box \mathbf{P} ?
(Tick (\checkmark) the correct answer.)
A \square
B \square
C \square
D \square
(b) Which of these instructions will be found in box \mathbf{Q} ? (Tick (\checkmark) the correct answer.)

A \square
B

C \square
D \square
(c) Which of these instructions will be found in box \mathbf{R} ? (Tick (\checkmark) the correct answer.)

A
B
C \qquad
D \square
8. Here is the block diagram for a simple public address system.

The sub-systems used in this are:
Mixer Loudspeaker Preamplifier Microphone Power amplifier

Which sub-system:
(a) turns sound into electrical signals;
(b) boosts the current; ……..] [1]
(c) combines the signal from a number of sources?
9. The diagram shows a D-type flip-flop used as a 'divide-by-two' sub-system.

The Q output generates pulses with a frequency of 20 Hz .
What is the frequency of the signals at:
(a) the clock input \qquad Hz;
(b) the $\overline{\mathrm{Q}}$ output Hz ?

10. (a) What is the voltage gain of the amplifier shown below?

Voltage gain $=$
(b) Which one of the following options would give the amplifier a voltage gain of 10 ? (Tick (\checkmark) the correct answer.)

Resistor P	Resistor Q
$9 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$
$10 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$
$20 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$
$22 \mathrm{k} \Omega$	$2 \mathrm{k} \Omega$

(c) The signal shown in the graph is applied to an amplifier having a voltage gain of 20.

What is the amplitude of the output signal?
11. A light sequence controller uses a simple memory IC to control a number of LEDs.

The memory IC has four address pins and three data pins.
A logic 1 signal from a memory IC output causes the corresponding LED to light.

(a) Complete the statement.

The pulse generator has a period of \qquad seconds.
(b) Complete the statement by circling the correct answer below:
0.25
0.5
2
4
8

The pulses applied to A1 have a period of \qquad seconds.
(c) Which of the following statements about the memory is true?
(Tick (\checkmark) the correct answer.)
It has 4 memory locations, each storing a 3 bit-number.
It has 4 memory locations, each storing an 8 bit-number.

It has 16 memory locations, each storing a 3 bit-number.

It has 16 memory locations, each storing an 8 bit-number. \square
12. The 2-bit counter IC in the following diagram is falling-edge triggered.

Initially the counter is reset.
Use the axes provided to draw the signals produced at counter outputs A and B caused by the pulses from the pulse generator.

13. (a) Here is the block diagram for a latch.

The latch sub-system:

- is initially reset;
- is triggered at time X;
- is reset at time Y .

Complete the timing diagram for the output of the latch.

(b) The diagram shows the incomplete circuit for a latch based on a rising-edge triggered D-type flip-flop. Switch Z is used to trigger the latch. Switch W is used to reset it. The buzzer sounds when the latch is triggered.

Three connections are needed to complete the circuit: (Tick (\checkmark) the correct answer.)
(i) A must be connected to:

Data input \square
Clock input
Reset input
12 V power rail
OV power rail
ork int

\square
\square
(ii) \mathbf{B} must be connected to:

Data input \square
Clock input
Reset input

12 V power rail \square
0 V power rail

(iii) D must be connected to:

Data input \square
Clock input
Reset input \square
12 V power rail \square
OV power rail \square
14. The diagram shows part of a light sequence controller circuit, for three LEDs.

A LED lights when it receives a logic 1 signal.

The incomplete table below describes the counter outputs as more pulses arrive at its input, and the resulting states of the LEDs.

Pulse	Counter outputs				LED		
	C	B	A	Red	Yellow	Green	
None	0	0	0	Off	On	Off	
1	0	0	1				
2	0	1	0				
3							
4							

(a) Which one of the following would make the counter reset on pulse 4? (Tick (\checkmark) the correct answer.)

Connect counter output A directly to the Reset input.
Connect counter output B directly to the Reset input.
Connect counter output C directly to the Reset input.
Connect counter outputs A and C to the inputs of a 2-input AND gate, with its output connected to the Reset input.

\square

(b) Complete the ' C ', ' B ', ' A ' columns in the table above, by adding a ' 0 ' or a ' 1 ', to show the counter outputs when pulse 3 has arrived.
(c) Complete the 'Red', 'Yellow' and 'Green' columns in the table above by adding either 'On' or 'Off' to show the state of each LED for each set of counter outputs.
15. The graph shows the way in which the voltage gain of an amplifier changes as the frequency of the signal changes.

(a) Use the graph to measure the bandwidth of the amplifier.
\qquad kHz
(b) Which one of the following could increase the bandwidth but leave the voltage gain unchanged? (Tick (\checkmark) the correct answer.)

Use a higher power supply voltage. \square
Increase the amplitude of the input signal.
Combine several amplifiers in a multi-stage amplifier. \square
Replace the amplifier with a non-inverting voltage amplifier. \square
16. A non-inverting amplifier has a voltage gain of 40 .

The upper graph shows the signal applied to its input.
The lower graph shows the signal produced at its output.

(a) Name the effect illustrated in the graphs.
(b) Which of the following could eliminate this problem? (Tick (\checkmark) the correct answer.)

Reduce the voltage gain of the amplifier. Increase the voltage gain of the amplifier.
\square

Reduce the bandwidth of the amplifier. \square
Increase the bandwidth of the amplifier. \square
17. An inverting amplifier has a voltage gain of 40 .

The input signal has an amplitude of 0.2 V and a period of 1 ms .
Draw the wave on the graph below so that it shows the corresponding output signal.

18. (a) The block diagram shows a system used to count how many times the switch is pressed.

Explain why it is necessary to debounce the switch.
(b) The debounce unit contains a Schmitt inverter.

The performance of a Schmitt inverter is shown below.

The input signal is shown in the top graph.
The corresponding output signal is shown in the bottom graph.
Complete the following sentences:
(i) The output of the Schmitt inverter changes from logic 1 to logic 0 when a rising input voltage reaches V.
(ii) The output of the Schmitt inverter changes from logic 0 to logic 1 when a falling input voltage reaches \qquad V.
19. The circuit diagram for an interface and lamp unit is shown below.

(a) The signal from the logic gate switches from $0.5 \mathrm{~V}(\operatorname{logic} 0)$ to 7.7 V (logic 1).

Complete the table below by:
(i) adding the correct voltages to the V_{1} column;
(ii) writing either 'On' or 'Off' to show the state of the lamp.

Output of AND gate	$\mathrm{V}_{\mathbf{1}}$	State of lamp	
0.5 V		V	
7.7 V		V	

(b) The bulb in the lamp unit is rated at $12 \mathrm{~V}, 100 \mathrm{~mA}$.

The transistor has a current gain $\left(\mathrm{h}_{\mathrm{FE}}\right)$ of 50 .
Calculate the base current, I_{B}, when the transistor is just saturated.
(c) The logic gate outputs 7.7 V . The transistor is just saturated.

What is the voltage drop across resistor R ?
(d) Hence calculate the value of resistor R .

BLANK PAGE

BLANK PAGE

