4161/01

ELECTRONICS

UNIT E1: Paper replacement test
P.M. MONDAY, 13 June 2016

1 hour plus your additional time allowance

Surname

Other Names \qquad

Centre Number

Candidate Number 0

For Examiner's use only

Question	Maximum Mark	Mark Awarded
1.	4	
2.	7	
3.	3	
4.	3	
5.	3	
6.	3	
7.	3	
8.	4	
9.	5	
10.	2	
11.	3	
12.	2	
13.	3	
14.	2	
15.	3	
16.	2	
17.	4	
18.	4	
Total	60	

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator and a ruler and a separate insert.

INSTRUCTIONS TO CANDIDATES

Use black ink, black ball-point pen or your usual method.

Write your name, centre number and candidate number in the spaces provided on the front cover.

Answer ALL questions in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Answer ALL questions.

1. Study the circuit on the opposite page.

Select the correct answers to the following questions.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

(a) What is the value of V_{1} ? \qquad V [1]
(b) What is the value of I_{2} ? \qquad
(c) What is the value of V_{3} ? \qquad V [1]
(d) What is the value of I_{4} ? \qquad

5

2(a) Below is a list of electronic components.
Diode LED \quad Thermistor \quad Thyristor
Transistor \quad Variable resistor

Select the correct name from the list above for EACH component shown opposite. [3]

2(b) Link each sub-system box on the left to the correct function box on the right. One has been done for you. [4]

Transistor switch

Output

3. Opposite is the pinout for a logic gate IC.
(a) How many logic gates are there?
(b) Circle the type of logic gate shown in the IC. [1]

AND gate NAND gate NOR gate
NOT gate OR gate
(c) What is the number of the pin labelled X ?
[1]

8

4. Select the name of each logic gate shown below.
[3]
AND gate
NAND gate
NOR gate

NOT gate
OR gate

5. The diagram opposite shows the pinout of a comparator IC.

Write each of the following labels below next to the correct pin on the comparator IC. [3]
positive supply
output
inverting input
6. The diagram shows a $270 \mathrm{k} \Omega \pm 10 \%$ resistor.

Use the information sheet on the separate insert to write down the correct colours of bands 1,2 and 3 present on this resistor. [3]

Band 1 \qquad

Band 2 \qquad

Band 3 \qquad

7. Opposite are four lamps.
(a) (i) Select the correct equation to calculate the power used in Lamp C in watts (W). [1]

$$
\begin{aligned}
& \square=\frac{9}{4} \\
& P=\frac{40}{9} \\
& P=9 \times 400 \\
& P=9 \times 0.4 \\
& P=\frac{9}{0.4} \\
& \square=\frac{400}{9} \\
& \square
\end{aligned}
$$

7(a) (ii) Calculate the power used in Lamp C. [1]

7(b) Which TWO lamps from the diagram opposite page 11 use the same power? (Tick ($/$) the correct answer.) [1]

A \& B

A \& C

A \& D

$B \& C$

$B \& D$

C \& D

8. Opposite is an analogue sensing circuit.
(a) Circle the name of the component labelled X . [1]
LDR
Resistor
Thermistor

Variable resistor
(b) $\quad \mathrm{V}_{\text {OUT }}=6 \mathrm{~V}$. Circle the correct voltage across component X. [1]

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

8(c) (i) What would happen to the voltage $\mathrm{V}_{\text {OUT }}$

 if a torch was used to shine light on to the circuit? (Tick ($/$) the correct answer.) [1]

VOUT would increase

$\mathrm{V}_{\text {OUT }}$ would decrease

$\mathrm{V}_{\text {OUT }}$ would stay the same

$\mathrm{V}_{\text {OUT }}$ would become 0 V
(ii) Give a reason for your answer. [1]

9. A garden centre requires an automatic system to water flowers in the customer display areas. The system should switch on the water only when the soil is dry and it is dark to avoid soaking any customers. It should switch off automatically when the soil is damp or it gets light.

> The light sensor outputs a Logic 1 when in daylight and Logic 0 when it is dark.
> The temperature sensor outputs a Logic 0 when it is cold and Logic 1 when it is warm.
> The moisture sensor outputs a Logic 0 when wet and Logic 1 when dry.

Thyristor OR gate Inverter
Pulse generator Temperature sensing unit
Moisture sensing unit Switch unit

MOSFET Light sensing unit AND gate

Select the correct sub-systems above to complete the block diagram opposite for the watering system. [5]

10(a) Circle the logic gate that has the following truth table. [1]

INPUTS		OUTPUT
A	B	Q
0	0	1
0	1	1
1	0	1
1	1	0

AND gate
NAND gate
NOR gate

NOT gate
OR gate
(b) Circle the logic gate that outputs a logic 0 signal ONLY when both inputs are at logic 0. [1]
AND gate
NAND gate
NOR gate

NOT gate
OR gate

11. A logic system has the following truth table.

INPUTS		OUTPUTS		
A	B	X	Y	Q
0	0	1	1	0
0	1	1	0	0
1	0	0	1	0
1	1	0	0	1

(a) Add the correct logic gates / connections to the circuit opposite to produce the truth table given above. [2]
(b) Circle the single logic gate that could replace the above combination. [1]
AND gate
NAND gate
NOR gate
NOT gate OR gate

12. Some of the NAND gates in the logic circuit opposite are redundant. Circle all redundant NAND gates. [2]
13. The diagrams opposite show three different combinations of two resistors.
Calculate the effective resistance of each combination in $k \Omega$. [3]

$\mathrm{k} \Omega$

14. There are two truth tables.

Select the correct Boolean equation that represents the function described by each truth table. (Tick (\checkmark) the correct answers.)
(a)

INPUTS		OUTPUT
A	\mathbf{B}	\mathbf{Q}
0	0	1
0	1	0
1	0	0
1	1	0

[1]
$\square \mathbf{Q}=\mathbf{A} \cdot \mathbf{B}$ \square $Q=\bar{A}+B$
$\square \mathbf{Q}=\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$ \square $Q=A+\bar{B}$

14(b) | INPUTS | | OUTPUT |
| :---: | :---: | :---: |
| A | \mathbf{B} | \mathbf{Q} |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

[1]

$$
\begin{aligned}
& \square \mathbf{Q}=\mathbf{A} \cdot \mathbf{B}+\overline{\mathbf{A} \cdot \boldsymbol{B}} \quad \square \mathrm{Q}=\overline{\mathbf{A} \cdot B}+\overline{\mathrm{A} \cdot \boldsymbol{B}} \\
& \square \mathbf{Q}=\overline{\mathrm{A}} \cdot \mathbf{B}+\mathbf{A} \cdot \bar{B} \quad \square \mathrm{Q}=\mathbf{A} \cdot \bar{B}+\mathbf{A} \cdot \mathbf{B}
\end{aligned}
$$

A

D

15. The opposite page shows the NAND equivalent circuits for a number of standard gates.

Write the letter of the NAND equivalent circuit which represents each of the standard gates below. [3]

STANDARD GATE

NAND EQUIVALENT CIRCUIT

16. The circuit opposite is PART OF a burglar alarm.
(a) Input A needs to be at logic 0 when a switch is pressed.
Draw the components required in boxes P and Q.
(b) What is the purpose of the component labelled ' Y ' in the circuit opposite?

17. The INCOMPLETE circuit opposite shows a comparator used to switch on a floodlight when it gets dark.
(a) Select the correct formula to calculate the voltage $\mathrm{V}_{\text {REF }}$. [1]
$\square \mathrm{V}_{\mathrm{REF}}=\frac{6}{5+1.5} \times 30 \square \mathrm{~V}_{\text {REF }}=\frac{1.5}{6+1.5} \times 30$
$\square \mathrm{V}_{\mathrm{REF}}=\frac{5}{6+1.5} \times 30 \square \mathrm{~V}_{\text {REF }}=\frac{1.5}{1.5+5} \times 30$
(b) Calculate the voltage $\mathrm{V}_{\mathrm{REF}}$ at the inverting input.
[1]
$\mathrm{V}_{\text {REF }}=$ —— V

17(c) Complete the output circuit for the comparator using the components shown opposite. [2]

18. A LED is to be used as a power on indicator as shown opposite.
The LED requires a current of 16 mA .
(a) What is the voltage across the resistor R ?
\qquad
(b) Select the correct equation to calculate the ideal resistance of resistor R (in $k \Omega$). [1]
$\square R=12 \times 16$

$$
\square R=\frac{2}{16}
$$

$$
R=\frac{10}{16}
$$

$$
\square R=10 \times 6
$$

$$
R=12 \times 2
$$

$$
\square R=\frac{12}{16}
$$

$$
\square \mathrm{R}=\frac{12}{2}
$$

$$
\square R=10 \times 16
$$

18(c) Calculate the ideal resistance of resistor R. [1]

$$
\mathrm{R}=\ldots \mathrm{k} \Omega
$$

(d) The current through the LED must be LESS than 16 mA . Use the E24 resistor series on the separate insert to select the preferred value for resistor R IN OHMS. [1]

INFORMATION SHEET FOR UNIT E1

This information may be of use in answering the questions.

1 RESISTOR COLOUR CODES

BLACK	0	GREEN	5
BROWN	1	BLUE	6
RED	2	VIOLET	7
ORANGE	3	GREY	8
YELLOW	4	WHITE	9

The fourth band colour gives the tolerance as follows:

GOLD $\pm 5 \%$

SILVER $\pm 10 \%$

PREFERRED VALUES FOR RESISTORS - E24 SERIES
$10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,43,47,51,56,62,68,75,82,91$.

3 RESISTANCE $=\frac{\text { voltage }}{\text { current }} ; \mathbf{R}=\frac{\mathrm{V}}{\mathrm{I}}$

4 EFFECTIVE RESISTANCE, R, of two resistors R_{1} and R_{2} in series is given by $R=R_{1}+R_{2}$.

5 EFFECTIVE RESISTANCE, R, of two resistors R_{1} and R_{2} in parallel is given by $R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$

6 VOLTAGE DIVIDER

7 POWER = voltage \times current; $\quad P=V I=I^{2} R=\frac{V^{2}}{R}$

8 LED The forward voltage drop across a LED is 2 V .

9 NPN TRANSISTORS
(i) Current gain $=\frac{\text { Collector current }}{\text { Base current }} ; \mathrm{h}_{\mathrm{FE}}=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}}$.
(ii) The forward voltage drop across the base emitter junction is 0.7 V .

