Surname	Centre Number	Candidate Number
Other Names		

GCSE

WJEC

 CBAC
4162/01

ELECTRONICS
 UNIT E2
 (Paper version of on-screen assessment)

P.M. THURSDAY, 14 June 2012

1 hour

Examiner only
Total
Marks
100010
291t

ADDITIONAL MATERIALS

In addition to this examination paper you may need a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

INFORMATION SHEET FOR UNIT E2

This information may be of use in answering the questions.

1. Resistor Colour

 Codes| BLACK | 0 | GREEN | 5 |
| :--- | :--- | :--- | :--- |
| BROWN | 1 | BLUE | 6 |
| RED | 2 | VIOLET | 7 |
| ORANGE | 3 | GREY | 8 |
| YELLOW | 4 | WHITE | 9 |

The fourth band colour gives the tolerance as follows:

GOLD $\pm 5 \%$
SILVER $\pm 10 \%$
2. Preferred Values for Resistors - E24 series

$$
10,11,12,13,15,16,18,20,22,24,27,30,33,36,39,43,47,51,56,62,68,75,82,91 .
$$

3. Resistance $=\frac{\text { voltage }}{\text { current }} ; \mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}$.
4. Effective resistance, R, of two resistors R_{1} and R_{2} in series is given by $R=R_{1}+R_{2}$.
5. Effective resistance, R, of two resistors R_{1} and R_{2} in parallel is given by $R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$.
6. Voltage Divider

7. \quad Power $=$ voltage \times current; $\quad \mathrm{P}=\mathrm{VI}=\mathrm{I}^{2} \mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$.
8. LED The forward voltage drop across an LED is 2 V .
9. NPN Transistors
(i) Current gain $=\frac{\text { Collector current }}{\text { Base current }} ; \mathrm{h}_{\mathrm{FE}}=\frac{\mathrm{I}_{\mathrm{C}}}{\mathrm{I}_{\mathrm{B}}}$.
(ii) The forward voltage drop across the base emitter junction is 0.7 V .

10. Amplifiers

Voltage gain: $\quad A=\frac{V_{\text {OUT }}}{V_{\text {IN }}}$
Non-inverting amplifier: $\quad A=1+\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{1}}$

Inverting amplifier:

$$
\mathrm{A}=-\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}_{\mathrm{IN}}}
$$

Summing amplifier: $\quad \mathrm{V}_{\mathrm{OUT}}=-\mathrm{R}_{\mathrm{F}}\left(\frac{\mathrm{V}_{1}}{\mathrm{R}_{1}}+\frac{\mathrm{V}_{2}}{\mathrm{R}_{2}}+\ldots\right)$

Answer all questions.

1. Which graph shows the output signal for a monostable set up to produce a delay of 11 s ? (Tick (\checkmark) the correct answer.)

Output (V)

2. The circuit diagram shows a 555 timer set up as a monostable to give a time delay of 11 seconds.

The $100 \mathrm{k} \Omega$ resistor is replaced with a $200 \mathrm{k} \Omega$ resistor. What is the new time delay? (Tick (\checkmark) the correct answer.)

1.1 s

5.5 s
\square 11 s

22 s
\square 110 s
3. The diagram shows a D-type flip-flop used in a divide-by-two circuit. Pulses from the Q output have a frequency of 10 Hz .

Give the frequency of the signals at:
(a) the clock input;
Hz
(b) the $\overline{\mathrm{Q}}$ output.
Hz
4. Which one of the following systems must contain an astable circuit?
(Tick (\checkmark) the correct answer.)
\square A bath alarm flashes an LED on and off when the bath water is too hot.

In a kitchen timer, a buzzer comes on and stays on until a reset switch is pressed.

In a game scorer, a lamp lights as soon as one team reaches a score of 5 .
\square A car alarm sounds the horn continuously for 2 minutes when someone rocks the car.
5. An electronic toothbrush warns the user that the battery voltage is too low by sounding a buzzer for three seconds.

The control system does this by generating a single square pulse with an amplitude of 5 V and a period of 3 s .

Complete the graph by drawing this pulse. The trace is started for you.

6. This D-type flip-flop is rising-edge triggered.

The graphs show the data and clock signals.

Logic level

Logic level

What logic level is present on the Q output:
(a) at time 5 s ;
(b) at time 9 s ;
(c) at time 13 s?
(d) Which line of the table gives the signals on the $\overline{\mathrm{Q}}$ output at the times shown?
(Tick (\checkmark) the correct answer.)
7. The diagram shows a D-type flip-flop set up as a one-bit counter. The Q output starts at logic 0 .

The upper graph shows the clock pulses applied to the counter.

Complete the corresponding output signals at the Q and $\overline{\mathrm{Q}}$ terminals.

8. The diagram shows a four-bit up counter. Output \mathbf{D} is the most significant bit (MSB).

The table shows the initial sequence of output signals caused by clock pulses from the pulse generator.

Clock pulses received	Outputs			
	\mathbf{D}	\mathbf{C}	\mathbf{B}	\mathbf{A}
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0

(a) Which line shows the signals at the outputs after four clock pulses have been received? (Tick (\checkmark) the correct answer.)

Clock pulses received	Outputs				
	\mathbf{D}	C	B	A	
4	0	0	1	1	

4	0	1	0	0

4	0	1	0	1

\square
\square
4
0
1 1 0
(b) How many clock pulses are needed to make the \mathbf{D} output produce a logic 1 signal? (Tick (\checkmark) the correct answer.)
5

\square 7 \square 8
(c) The counter resets when the Reset input receives a logic 1 signal. Which output combination will reset the counter?
(Tick (\mathcal{J}) the correct answer.)

Outputs				
	\mathbf{D}	\mathbf{C}	\mathbf{B}	\mathbf{A}
	0	1	0	1
	0	1	1	0
	1	0	0	1
	1	1	0	0

9. In one type of counter, each output is activated in turn when the clock pulses arrive.

A typical pinout is shown in the diagram.
Which type of counter IC does this describe?
10. The diagram shows a system that displays the number of pulses received from a pulse generator. A reset switch is used to restart the count.

Which counter could be used in this system without requiring extra connections to reset it when the count passes 9 ? (Tick (\checkmark) the correct answer.)
\square up/down counter

a binary counter
\square a BCD counter
\square a decade counter
11. The diagram shows a 7 -segment display.

A logic 1 signal makes a segment light up.

(a) Identify the character displayed by the signals shown.

Segments						Character displayed	
\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}		
1	1	1	0	0	0	0	

(b) Complete the signals needed to display the letter ' H '.

Segments						Character displayed	
$\mathbf{~}$	\mathbf{b}	c	d	e	f		
							H

12. Complete the diagram for an amplifier system using some of the sub-systems given. You can use each sub-system once, more than once or not at all.

Power amplifier	Astable	AND gate	Preamplifier	Mixer

13. The diagram shows part of the control system for a set of coloured lights. Each light is switched on when it receives a logic 1 signal.

Complete the diagram by adding three of the components provided.
The required sequence of lights is shown in the table.

Pulses from pulse generator	Counter outputs			Lights		
	C	B	A	Yellow	Blue	Green
0	0	0	0	0	1	0
1	0	0	1	1	1	1
2	0	1	0	1	1	0
3	0	1	1	1	1	1
4	1	0	0	0	0	0
5	1	0	1	1	0	1
6	1	1	0	1	0	0
7	1	1	1	1	0	1

14. A non-inverting amplifier has a voltage gain of 4 . The upper graph shows the signal applied to the input of the amplifier. Use the axes provided to draw the corresponding output signal.

15. The monostable circuit shown in the diagram is triggered by the falling-edge of a signal applied to the trigger input.

This can be achieved by using push-to-make or push-to-break switches.
Which two of the following produce a falling-edge signal at the output when the switch is pressed? (Tick (\checkmark) the correct answers.)

\square
\square
16. The graph shows the frequency response of a voltage amplifier.

What is the bandwidth of this amplifier in Hz ?
17. Two multistage amplifiers are shown.

They use identical op-amps, which are configured to give the gains shown.

System B

Which system, \mathbf{A} or \mathbf{B}, has the bigger gain?
Which system, A or B, has the bigger bandwidth?
18. The output signal from a voltage amplifier is 'clipped'.

Which is the best solution to remove the clipping? (Tick (\checkmark) the correct answer.)
\square Increase the power supply voltage to the amplifier.
\square Reduce the power supply voltage to the amplifier.
\square Increase the bandwidth of the amplifier.
\square Reduce the bandwidth of the amplifier.
19. Which combination of resistors would give the following non-inverting amplifier a voltage gain of 10 ? (Tick (\checkmark) the correct answer.)

	Resistor 1	Resistor 2
\square	$9 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$
\square	$1 \mathrm{k} \Omega$	$9 \mathrm{k} \Omega$
\square	$1 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$
\square	$10 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$

20. Here is part of a data sheet for a Schmitt Inverter.

When connected to 5 V supply:

- Logic $0=0 \mathrm{~V}$
- Logic $1=5 \mathrm{~V}$
- The output changes from logic 1 to logic 0 when a rising input voltage reaches 3 V
- The output changes from logic 0 to logic 1
when a falling input voltage reaches 1 V

The input signal for the Schmitt Inverter is shown below.

Use the axes provided to complete the corresponding output signal.
21. The transistor switch in the diagram acts as an interface between a logic system and three lamps.

Each lamp is rated at $12 \mathrm{~V}, 100 \mathrm{~mA}$.

(a) What is the collector current when the three lamps are fully lit?

Collector current $=$ \qquad mA
(b) Using the following table, which transistor is capable of driving the three lamps, whilst drawing the smallest current from the logic system? (Tick (\mathbb{J}) the correct answer.)

	Transistor	Current gain, $\mathbf{h}_{\text {FE }}$	Collector current, $\mathbf{I}_{\mathbf{C}}$ max
	A	50	120
	B	100	120
	C	50	500
\square	D	150	500

22. A simple fire alarm uses a transistor switch.

Complete the table to show the voltages V_{1} and V_{2} for the input voltages V_{IN} given.
(a)

V_{IN}	V_{1}	$\mathrm{~V}_{2}$
0.2 V		
1.2 V		

23. The circuit diagram shows an astable circuit.

The output frequency can be calculated using the formula:

$$
\mathrm{f}=\frac{0.72}{\mathrm{R}_{\mathrm{B}} \times \mathrm{C}}
$$

Calculate the output frequency.
Output frequency $=$ \qquad Hz
24. The diagram shows a transistor switch circuit.

The input voltage $\mathrm{V}_{\mathrm{IN}}=5.2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$.

(a) Calculate the voltage drop across resistor R .

Voltage drop $=$ \qquad V
(b) Calculate the ideal value of resistor R , in $\mathrm{k} \Omega$ that gives a base current, I_{B} of 2 mA .
25. Amplifier systems often contain a mixer to combine signals.

The diagram shows part of the circuit of a mixer, used to combine signals $\mathbf{1}$ and $\mathbf{2}$.
The box on the right contains the available components.
Draw the correct component in each of the dotted boxes.

26. The block diagram shows a simple traffic light system controlled by a memory IC.

The data stored in the memory IC is shown in the following table:

A3	A2	A1	A0	D2	D1	D0
0	0	0	0	1	0	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	1	0
0	1	0	0	1	1	0
0	1	0	1	0	0	1
0	1	1	0	0	0	1
0	1	1	1	0	1	0
1	0	0	0	0	1	0
1	0	0	1	Reset		

(a) For how many seconds does the red light stay on after the counter is reset?
\qquad
(b) How long does the whole sequence take before it is reset?
(c) This memory IC has 4 address pins, A3, A2, A1 and A0.

What is the maximum number of steps that can be stored in this memory IC?
\qquad
27. Here is part of the flowchart for a car safety system. It warns the driver that the seat belt is not fastened.

(a) What is the effect of the first two boxes?
\qquad
\qquad
\qquad
\qquad
(b) The seat belt is not fastened. Explain in detail what the buzzer does.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

