Surname

Co Nu

0

Other Names

GCSE

4162/01

ELECTRONICS UNIT E2 (Paper version of on-screen assessment)

A.M. TUESDAY, 14 June 2011

l hour

Examiner only

Total Marks

4162 010001

ADDITIONAL MATERIALS

Information sheet.

In addition to this examination paper you may need a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

INFORMATION SHEET FOR UNIT E2

This information may be of use in answering the questions.

1. Resistor Colour

Codes

BLACK	0	GREEN	5	
BROWN	1	BLUE	6	
RED	2	VIOLET	7	
ORANGE	3	GREY	8	
YELLOW	4	WHITE	9	

The fourth band colour gives the tolerance as follows: GOLD ± 5% SILVER ± 10%

2. Preferred Values for Resistors – E24 series

10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91.

3. **Resistance** =
$$\frac{\text{voltage}}{\text{current}}$$
; $R = \frac{V}{I}$.

- 4. Effective resistance, R, of two resistors R_1 and R_2 in series is given by $R = R_1 + R_2$.
- 5. Effective resistance, R, of two resistors R₁ and R₂ in parallel is given by $R = \frac{R_1R_2}{R_1 + R_2}$.
- 6. Voltage Divider

- 7. **Power** = voltage × current; $P = VI = I^2 R = \frac{V^2}{R}$.
- 8. LED The forward voltage drop across an LED is 2V.
- 9. NPN Transistors (i) Current gain = $\frac{\text{Collector current}}{\text{Base current}}$; $h_{\text{FE}} = \frac{I_{\text{C}}}{I_{\text{B}}}$.

(ii) The forward voltage drop across the base emitter junction is 0.7V.

10. Amplifiers

Voltage gain: $A = \frac{V_{OUT}}{V_{IN}}$

Non-inverting amplifier:
$$A = 1 + \frac{R_F}{R_1}$$

Inverting amplifier:
$$A = -\frac{R_F}{R_{IN}}$$

Summing amplifier:
$$V_{OUT} = -R_F \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \dots \right)$$

4

Answer all questions.

1. Monostable circuits use a capacitor and a resistor to produce a time delay. The circuit diagram shows a resistor and a capacitor used with a 555 timer IC in a monostable circuit.

Here are four resistor/capacitor sets.

Set	Resistor	Capacitor
А	10 kΩ	330µF
В	100 kΩ	330µF
С	10 kΩ	33µF
D	100 kΩ	33µF

Which one, A, B, C or D, will produce the longest time delay?

[1]

Answer

The graph shows a signal produced by an electronic sub-system.

5

What is:

2.

<i>(a)</i>	the amplitude of the signal;	
<i>(b)</i>	the period of the signal?	

4162 010005

[1]

[1]

3. The block diagram shows how a sequence can be generated using a memory IC.

The memory stores the following data:

A2	A1	A0	D3	D2	D1	D0
0	0	0	0	0	0	1
0	0	1	0	0	1	1
0	1	0	0	1	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	1	0	0	1	1
1	1	0	Reset			

(a) How many lights can be controlled separately by this system? [1]
(b) How many separate steps (patterns) are stored in this sequence? [1]
(c) This memory IC has 3 address pins, A2, A1 and A0. What is the maximum number of steps that can be stored in this IC? [1]

The latch circuit uses a rising-edge triggered D-type flip-flop. To begin with, the Q output is logic 0.

When switch X is pressed, the clock input changes from logic 0 to logic 1. When switch Y is pressed, the reset input changes from logic 0 to logic 1.

Here are four possible answers to use in the questions which follow:

A. It goes to logic 1 and stays there.

4.

- B. It goes to logic 1 but then drops back to logic 0 when the switch is released.
- C. It goes to logic 0 and stays there.
- D. It goes to logic 0 but then drops back to logic 1 when the switch is released.
- (a) Switch X is pressed and then released. As a result:
 - (i) what happens to the Q output? (Choose answer A, B, C or D.)

Answer

(ii) what happens to the \overline{Q} output? (Choose answer A, B, C or D.)

Answer

(b) Switch Y is now pressed and released. What happens to the Q output? (Choose answer A, B, C or D.)

Answer

[1]

[1]

[1]

Examiner only

> 4162 010 007

5. The graphs show four different signals.

Here is the block diagram for a counting system. It shows how many times the switch has been 6. pressed.

9

Subsystem X converts the output of the counter to light the correct LEDs in the seven-segment display. [1]

Choose the best subsystem to do this from the following list:

- A. monostable
- decoder / driver B.
- C. AND gate
- transducer driver D.

Answer

7. The diagram shows a 7-segment display. A logic 1 signal makes a segment light up. Complete the table by identifying the number shown on the display when the signals given in the table are sent to the 7-segment display. [1]

		Number Displayed						
a	b	c	d	e	f	g	Displayed	
1	1	0	1	1	0	1		

1162

8. Here is the block diagram for a freezer alarm.

Normally, when the freezer is cold enough, the lamp is not lit. When the freezer is too hot, the lamp flashes on and off repeatedly.

- (a) What is the job of the astable in this system? Choose your answer from the following list:
 - A. It makes the Lamp unit pulse on and off repeatedly when the Monostable output is high.
 - B. It outputs a steady logic 1 signal when the freezer gets too hot.
 - C. It keeps the Lamp unit switched on for 30s and then switches it off automatically.
 - D. It buffers the output of the Monostable, providing enough current to light the lamp. [1]

Answer

(b) The circuit diagram shows part of the interface.
 Each of the boxes labelled A, B and C needs the addition of a component or a wire link.
 Complete the circuit diagram. [3]

(S11-4162-01)

[3]

11. The boxes on the left give the names of the sub-systems in a typical amplifier system. The boxes on the right give the functions of three of these sub-systems. Draw lines to link each function to the correct sub-system.

12. Which of the following, A, B, C or D, best completes the sentence describing the behaviour of a rising-edge D-type flip-flop? [1]

On the rising-edge of a clock pulse:

- A. the Q output copies the logic level present on the clock input.
- B. the Q output copies the logic level present on the data input.
- C the \overline{Q} output copies the logic level present on the clock input.
- D. the \overline{Q} output copies the logic level present on the data input.

Answer

13. An amplifier outputs a signal of amplitude 20 mV when the input signal has an amplitude of 10 mV.

13

Which one of the following is the voltage gain of the amplifier?

1 2 3 4 5 6 7 8 9 10

Answer

14. The circuit diagram shows part of the circuit of a non-inverting amplifier. Each of the boxes labelled A, B and C needs the addition of a component or a wire link. Complete the circuit diagram

Examiner only

[1]

[3]

- **16.** Here is part of the flowchart for a control system. The system must:
 - set the counter to zero;
 - then wait until a switch is pressed;
 - then increase the number stored in the counter by 1.

18. The circuit diagram shows part of the control system for a set of coloured lights.

Each of the lights is switched on when it receives a logic 1 signal.

(a) Complete the table by adding either 'Off' or 'On' in each cell to show the state of the lights for each set of counter outputs. [3]

Pulses from	Counter outputs			Lights			
pulse generator	C	В	Α	Red	Blue	Green	
0	0	0	0				
1	0	0	1				
2	0	1	0				
3	0	1	1				

- (b) Which one of the following, P, Q, R, S or T, would make the counter reset on the 4th pulse from the pulse generator? [1]
 - P. Connect counter output A directly to the Reset input.
 - Q. Connect counter output B directly to the Reset input.
 - R. Connect counter output C directly to the Reset input.
 - S. Connect counter outputs B and C to the inputs of a 2-input AND gate, and then connect the output of the AND gate to the Reset input.
 - T. Connect counter outputs A and C to the inputs of a 2-input AND gate, and then connect the output of the AND gate to the Reset input.

Answer

19. The diagram shows part of a light-chaser system.

The four LEDs light up when they receive a logic 1 signal. They light up in the following sequence:

Step	LED 3	LED 2	LED 1	LED 0
1	Off	Off	Off	On
2	Off	Off	On	Off
3	Off	On	Off	Off
4	On	Off	Off	Off

The sequence then repeats.

Which of the following types of counter, A, B, C or D, will produce the necessary output signals? [1]

- A. binary counter
- B. BCD counter
- C. decade counter
- D. up/down counter

Answer

- **20.** Here are four electronic systems:
 - A. Car hazard warning lights all the indicators flash on and off when the switch is closed.
 - B. Egg timer a buzzer sounds continuously four minutes after a switch is pressed.
 - C. Decorative lighting display the ten lights in the system switch on, one after another, in a sequence that repeats over and over again.
 - D. Electronic game scorer a siren sounds as soon as one team reaches a score of 5, and stays on until a reset switch is pressed.

Which one of these systems, A, B, C or D, must contain a monostable sub-system? [1]

Answer

21. A computer-controlled system is used to count sweets and pack them in a bag. The sweets pass a sensor and then fall into a bag.

When the bag contains 50 sweets a solenoid switches on and seals the bag.

Give one **advantage** of using this system rather than humans to pack the sweets. [1]

Examiner

22. The diagram shows part of the flowchart for a system that is designed to prevent an enclosure from overheating. If the temperature goes above 40°C the system blows in cool air.

Describe the sequence of events that takes place over a period of 25 seconds after the temperature goes above 40°C. [2]

(S11-4162-01)

only

23. The circuit diagram shows a 555 timer used in a monostable circuit.

- (a) Complete the trigger circuit for the monostable by adding a pull-up resistor and a push switch. [2]
- (b) Use the component values below in the formula T = 1.1 RC to calculate the time delay produced by this circuit.

R C

$$= 47k\Omega;$$

= 120µF. [2]

T =

24. The circuit diagram shows a dedicated 2-bit up counter IC. It counts pulses produced by a pulse generator. The counter is rising-edge triggered.

The top graph shows the pulses received from the pulse generator.

Initially, the counter is reset.

Use the axes provided to construct the signals at the A (least significant bit) and B (most significant bit) outputs of the counter. [3]

22

Use the formula:
$$V_{OUT} = -R_F \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$

to calculate the output voltage produced by the summing amplifier.

[2]

V_{OUT} =

Examiner

27. Here is part of a data sheet for a Schmitt Inverter:

When connected to 5 V supply:

- Logic 0 = 0 V
- Logic 1 = 5 V
- The output changes from logic 1 to logic 0 when a **rising** input voltage reaches 3 V
- The output changes from logic 0 to logic 1 when a **falling** input voltage reaches 1 V

The input signal for the Schmitt Inverter is shown below.

Use the axes provided to draw the resulting output signal produced by the Schmitt trigger. [4]

- C. Combine several amplifiers in a multi-stage amplifier.
- D. Monitor the output signal with a cathode-ray oscilloscope (CRO).

Answer:

25

GCSE

ELECTRONICS CANDIDATE INFORMATION SHEET FOR UNIT E2

A.M. TUESDAY, 14 June 2011

This information may be of use in answering the questions.

1. **Resistor Colour**

Codes

BLACK	0	GREEN	5
BROWN	1	BLUE	6
RED	2	VIOLET	7
ORANGE	3	GREY	8
YELLOW	4	WHITE	9

The fourth band colour gives the tolerance as follows:

GOLD $\pm 5\%$

2. Preferred Values for Resistors – E24 series

10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91.

3. **Resistance** =
$$\frac{\text{voltage}}{\text{current}}$$
; R = $\frac{\text{V}}{\text{I}}$.

- 4. Effective resistance, R, of two resistors R_1 and R_2 in series is given by $R = R_1 + R_2$.
- 5. Effective resistance, R, of two resistors R₁ and R₂ in parallel is given by $R = \frac{R_1R_2}{R_1 + R_2}$.
- 6. Voltage Divider $+ V_s$ \sim R_1 R_1 R_2 $V_{OUT} = \frac{R_2}{R_1 + R_2} \times V_s$
- 7. **Power** = voltage × current; $P = VI = I^2 R = \frac{V^2}{R}$.
- 8. LED The forward voltage drop across an LED is 2 V.
- 9. NPN Transistors (i) Current gain = $\frac{\text{Collector current}}{\text{Base current}}$; $h_{\text{FE}} = \frac{I_{\text{C}}}{I_{\text{B}}}$.
 - (ii) The forward voltage drop across the base emitter junction is 0.7V.

10. Amplifiers

Voltage gain:
$$A = \frac{V_{OUT}}{V_{IN}}$$

Non-inverting amplifier: $A = 1 + \frac{R_F}{R_1}$

Inverting amplifier:
$$A = -\frac{R_F}{R_{IN}}$$

Summing amplifier:
$$V_{OUT} = -R_F \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \dots \right)$$