
General Certifi cate of Secondary Education
2024

14158.01 F

Digital Technology
Unit 4

Digital Development Concepts

[GDG41]

THURSDAY 6 JUNE, AFTERNOON

MARK
SCHEME

214158.01 F

General Marking Instructions

Introduction
Mark schemes are published to assist teachers and students in their preparation for examinations.
Through the mark schemes teachers and students will be able to see what examiners are looking for
in response to questions and exactly where the marks have been awarded. The publishing of the mark
schemes may help to show that examiners are not concerned about fi nding out what a student does not
know but rather with rewarding students for what they do know.

The Purpose of Mark Schemes
Examination papers are set and revised by teams of examiners and revisers appointed by the Council.
The teams of examiners and revisers include experienced teachers who are familiar with the level and
standards expected of students in schools and colleges.

The job of the examiners is to set the questions and the mark schemes; and the job of the revisers is to
review the questions and mark schemes commenting on a large range of issues about which they must
be satisfi ed before the question papers and mark schemes are fi nalised.

The questions and the mark schemes are developed in association with each other so that the issues of
diff erentiation and positive achievement can be addressed right from the start. Mark schemes, therefore,
are regarded as part of an integral process which begins with the setting of questions and ends with the
marking of the examination.

The main purpose of the mark scheme is to provide a uniform basis for the marking process so that
all the markers are following exactly the same instructions and making the same judgements in so far
as this is possible. Before marking begins a standardising meeting is held where all the markers are
briefed using the mark scheme and samples of the students’ work in the form of scripts. Consideration
is also given at this stage to any comments on the operational papers received from teachers and their
organisations. During this meeting, and up to and including the end of the marking, there is provision for
amendments to be made to the mark scheme. What is published represents this fi nal form of the mark
scheme.

It is important to recognise that in some cases there may well be other correct responses which are
equally acceptable to those published: the mark scheme can only cover those responses which emerged
in the examination. There may also be instances where certain judgements may have to be left to the
experience of the examiner, for example, where there is no absolute correct response – all teachers will
be familiar with making such judgements.

3

AVAILABLE
MARKS

14158.01 F

1 (a) D No result [1]
 (b) A This is a square, 144 [1]
 (c) D No result [1]
 (d) C Shape Perimeter, 20 [1]

2 (a) D 18 19 20 21 22 23 [1]
 (b) B 2 4 6 8 [1]
 (c) C 12 14 16 18 [1] 3

3 (a) 1. Correct cost assignment 10 (after>50) [1]
 2. Condition1 : >20/>=21 [1]
 3. Correct cost assignment 15 [1]
 4. Condition2 : >0/>=1/Else [1]
 5. Correct cost assignment 20 [1]
 6. Calculation of total cost/output of total cost [1]

 Allow <=20 with cost of 20 if the solution is structured to prevent negative
quantities

 Assignment statements must be structured correctly
 Remember that there should only be 1 condition in each IF statement
 Reverse allowed but remember only one condition on each line

 SAMPLE ANSWER
 OUTPUT “Enter the group size”
 INPUT groupSize
 IF groupSize > 50 THEN
 1. cost = 10*groupSize/OUTPUT 10* groupSize [1]
 2. ELSE IF groupsize>=21/groupsize>20 [1] THEN
 3. cost = 15*groupSize/OUTPUT 15* groupSize [1]
 4. ELSE/ELSEIF groupsize>0/groupsize>=1 [1] THEN
 5. cost = 20*groupSize/OUTPUT 20* groupSize [1]
 6. OUTPUT cost [1]/ credit any correct output statement in lines 1–5 above.

 Note that alternative solutions using one correct condition and nested if
statements are acceptable if correct output is achieved [6]

 (b) (i) Any two from:
 Checking/ensuring input/data (entered) [1] against a set of criteria/rules/

conditions [1]/
 (ensures data) is reasonable/sensible/within specifi c boundaries/

acceptable [1] [2]

 (ii) Any two from:
 Checks the number of characters [1]
 ensure the data entered does not exceed a given length [1]
 can check to ensure that null data is not entered [1]/the number of

characters entered is >0 [1]/is not left blank [1] [2]

 (iii) Double/Real/Float [1] [1]

4

414158.01 F

AVAILABLE
MARKS

 (c) valid = FALSE [1]
 WHILE valid = FALSE [1]
 Output (“Enter the group size”)
 Input groupSize
 IF groupSize>=1 [1] and [1] groupSize<=100 [1]
 valid = TRUE [1]
 Else
 Output (“Enter a value between 1 and 100”)
 ENDIF
 END WHILE
 Inequalities must be correctly structured [6]

4 (a)

 [3]

 (b) (i) Conversion work – accept divide by two or place value [1]
 01010000 [1]/allocate [1] mark for 7 bits 1010000 [2]

 (ii) Conversion work
 Allocate a total of [1] for showing any one or both of the following

pieces of conversion work: 0101=5 or 0000=0 [1]
 50 [1] [2]

 (c) (i) Conversion work [1]
 170 [1] [2]

 (ii) Conversion work
 Allocate a total of [1] for showing any one or both of the following

pieces of conversion work: 1010=A or 1010=A [1]
 AA [1] [2]

 (d) (i) [1] for any correctly carried value
 (1) [1] 01111000 [1]
 ([1] for overflow and [1] for result) [3]

 (ii) Any one from:
 an additional bit is added to the binary pattern [1]
 the result of the calculation is incorrect [1]
 reference to exceeding maximum number that can be represented [1] [1]

 (e) A B C = NOT(A and B) D = C or B
0 0 1 1

0 1 1 [1] 1

1 0 1 [1] 1

1 1 [1] 0 [1] 1 [1]

 [5]

17

Bit pattern Term
0110 NIBBLE [1]

0 BIT [1]

10011001 BYTE [1]

20

5

AVAILABLE
MARKS

14158.01 F

5 (a) In PROCEDURAL [1] programming a programmer
 specifies STEP BY STEP [1] what a program must do. Instructions are

carried out in
 a SEQUENTIAL [1] manner.
 OBJECT ORIENTED [1] programming uses self-contained
 OBJECTS [1] which contain both programming routines or methods
 and the
 DATA [1] being processed. [6]

 (b) Statement TRUE/FALSE

Translators can be either compilers or interpreters TRUE [1]

Interpreters translate the whole program at once
whilst compilers translate the program line by line FALSE [1]

A compiler reports all syntax errors after attempting
to compile the program TRUE [1]

After a program has been compiled the machine
code version of the program is stored in a separate
fi le from the source code

TRUE [1]

 [4]

6 Level 0 [0]
 Answer is not worthy of credit.

 Level 1 ([1]–[2])
 The candidate correctly refers to one [1] or two [2] of logic and execution errors.

The candidate makes limited use of spelling, punctuation and grammar. The
meaning of the text is not always clear. The candidate displays a limited form and
style appropriate to the question. The organisation of the answer is limited.

 Level 2 ([3]–[4])
 The candidate correctly describes one [3] or two [4] of logic and execution errors.

The candidate makes satisfactory use of spelling, punctuation and grammar. The
meaning of the text is usually clear. The candidate demonstrates a satisfactory
form and style appropriate to the question. The organisation of the answer is
satisfactory.

 Level 3 ([5]–[6])
 The candidate fully describes the nature of logic and execution errors [5]. Good

examples of how the errors are caused together with reference to how they may
be resolved is included [6]. The candidate uses a good standard of spelling,
punctuation and grammar. The meaning of the text is always clear. The candidate
demonstrates a good standard of form and style appropriate to the question. The
organisation of the answer is good.

 Answers may include:
 Execution errors
 Occur at runtime/during execution
 not having enough memory to run the program
 Program will compile but crashes when executing/the program has no syntax

errors
 IDE will provide an error handling message/exception message or code
 Occurs when an instruction includes an action that cannot be carried out
 Suitable example, e.g. Divide by zero/File does not exist/array subscript out of

bounds
 Error handling routines can be included to prevent this type of program failure

10

614158.01 F

AVAILABLE
MARKS

 Logic errors
 Occur at runtime/during execution
 Causes unexpected behaviour/causes incorrect output/the output is not correct
 The program will still run/execute but will produce unexpected results/the

program has no syntax errors
 Problems can be detected by using the debug feature/setting breakpoints/
 completing a dry run/using a trace table
 Suitable example, e.g. incorrect condition in an IF-Statement/Loop
 When the source of the error is detected the code must be modified
 Whitebox testing can detect logic errors [6] 6

7 (a) (i) An array or list structure contains data of the same data type [1].
 In order to access the individual value 22 in votes, the array name [1]

must be used, followed by the index [1] of this element. This would be
written as votes [3] [1]. [4]

 (ii) Integer [1] Int [1] Do not accept numeric [1]

 (b) Language independent/English like instructions which represent a solution
 to the problem/show solution step by step/represents the flow/logic of the

solution/used to design a program [1] [1]

 (c) (i) votes[0]=23 [1] votes[1]=25 [1] votes[2]=25 [1] votes[3]=22 [1]
votes[4]=25 [1]

 [1] for each of any two correct. Maximum [2] marks.
 or votes = [1] (23, 25, 25, 22, 25) [1] [2]

 (ii) FOR X = 0 TO 4 [1]/len (votes) –1 [1]
 IF votes[X [1]] = 25 [1]
 allVotes= allVotes + 1 [1] [4]

 (iii) 1. use a WHILE LOOP with correct condition [1]
 2. correct use of running total for totalVotes [1]
 3. correct use of votes as array/list with loop counter as index [1]
 4. correct increment of loop counter [1] (inside loop)
 5. output totalVotes (outside loop)

 Accept
 WHILE..TRUE...BREAK with a suitable condition to control the loop.
 Accept WHILE in range
 Accept Count++

 SAMPLE ANSWER
 1. WHILE Count < 5/<=4 [1]
 2. & 3. totalVotes=totalVotes [1]+votes[Count] [1]
 4. Count=Count+1 [1]
 END WHILE
 5. OUTPUT totalVotes [1] [5]

 (iv) LowestVotes = 100
 X=0
 Do
 IF votes[X] [1] < lowestVotes [1] THEN
 lowestVotes = votes[X] [1]
 X = X + 1 [1] (allow X++
 While X < 5 [1]
 Output lowestVotes [1] [6]

714158.01 F

AVAILABLE
MARKS

 (d) (i) Statement Tick ()
The bubble sort compares adjacent elements and
swaps them if necessary [1]

The bubble sort takes each element and places it in
the correct place in a sorted sub-list

After the fi rst pass the largest number is in the correct
position in the array or list. [1]

The bubble sort completes only one pass and
compares adjacent elements once

The data in the array or list will be fully sorted after
n-1 passes. Where n is the number of elements in the
array or list

 [1]

 [3]

 (ii) PASS 1

 votes

22 23 24 25 19 [1]

 PASS 2
 votes

23 24 25 22 19 [1]

 PASS 3
 votes

24 25 23 22 19 [1]

 PASS 4
 votes

25 24 23 22 19 [1]

 (e) (i) Any two from:
 Compares each/every item in the list [1] to a target value [1]
 searches sequentially [1]
 until the (target) value is found [1] [2]

 (ii) Any two from:
 Requires a sorted list [1]
 Finds the mid point of the data [1]
 Repeatedly reduces the search list by half [1]
 If there is a match the search ends [1]
 Compares midpoint to target value [1] [2]

 (iii) The data is sorted [1] [1] 35

814158.01 F

AVAILABLE
MARKS

8 (a) Data Data type
Postcode String [1]
Identifi cation provided? Boolean/Bool [1]

 [2]

 (b) (i) Unit [1] Tests a single module/unit of the system [1]/e.g. a function/
method [1]/small part [2]

 (ii) Test
Number

Item
to be
tested

Reason for
test

Test data Expected
outcome

1. Name Valid Data [1] Any string value
[1]

Value
Accepted

2. Name Null Data [1]/
Ensure data is
present [1]

Press Enter Key Value Rejected

3. Age Extreme Data 14 or 18 [1] Value
Accepted

4. Age Invalid Data
[1]

35 Value Rejected
[1]/not
accepted [1]

5. Age Valid Data [1] Any value from
14 to 18 [1]

Value
Accepted

 [8]

 (c) Test
type

Who should carry out the
testing? What does it test?

Black
Box

Someone unfamiliar with
code [1]/Programmer/
developer/user [1]

External behaviour of the code
[1] The input and outputs [1]
Interfaces work correctly [1]
Functionality [1] (of the system)
User requirements are met [1] [2]

White
Box Programmer/developer [1]

The internal logic of the program
[1]
The structure/conditions/pathways
in the program [1]
Tests each line of the code [1] [2]

 [6]

9 (a) When evaluating a system it is important to ensure that the SOLUTION [1]
 meets its original DESIGN criteria [1]. This can be done by
 comparing it with the USER REQUIREMENTS [1].
 Evaluation should occur CONTINUOUSLY [1] during the DEVELOPMENT

PROCESS [1]. [5]

 (b) Test using high volumes [1] of valid/invalid/exceptional [1] [2]

 Total 120

18

7

