OCR (TABLES 2)

FORMULAE SHEET

for use in GCSE Design & Technology Examinations

Area of rectangle = $I \times w$

Area of triangle = $\frac{b \times h}{2}$

Area of circle = πr^2

Circumference of circle = $2\pi r$

Volume of rectangular prism = $I \times w \times h$

Volume of cylinder = area of base circle \times h

Volume of cone= $\frac{\text{area of base circle } \times h}{3}$ V=I \times RwhereVV=voltage in voltsI=current in ampsR=resistance in ohmsP=V \times IwherePP=voltage in voltsI=current in ampsI=current in ampsI=current in amps

Resistors in series

$$R_{total} = R_1 + R_2 + R_3$$
 etc.

Resistors in parallel

$$\frac{1}{R_{\text{total}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$
 etc.

Potential divider

Voltage out = $\frac{R_2}{R_1 + R_2} \times$ Supply Voltage

(Where R₁ is connected to supply voltage)

S

$$R_{\text{total}} = \frac{R_1 \times R_2}{R_1 + R_2}$$

Resistor colour code

1st Colour Band 1st Digit		2nd Colour Band 2nd Digit		3rd Colour Band Number of Zeros		4th Colour Band Tolerance	
Black	0	Black	0	Black	No zeros	Gold	5%
Brown	1	Brown	1	Brown	One zero	Silver	10%
Red	2	Red	2	Red	Two zeros		
Orange	3	Orange	3	Orange	Three zeros		
Yellow	4	Yellow	4	Yellow	Four zeros		
Green	5	Green	5	Green	Five zeros		
Blue	6	Blue	6	Blue	Six zeros		
Violet	7	Violet	7	Silver	0.01		
Grey	8	Grey	8	Gold	0.1		
White	9	White	9				

Transistor current gain
$$(h_{fe}) = \frac{I_c}{I_b}$$

where

 I_c = collector current in amps I_b = base current in amps Emitter current $(I_e) = I_b + I_c$

Voltage gain =
$$\frac{V_{out}}{V_{in}}$$

Capacitor time constant T = C × R
where T = time in seconds
C = capacitance in farads
R = resistance in ohms
Capacitors in series
 $\frac{1}{C_{total}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$ etc.
Capacitors in parallel
 $C_{total} = C_1 + C_2 + C_3$ etc.
Mark space ratio = $\frac{t_1}{t_2}$
where t_1 is mark time in seconds
 t_2 is space time in seconds
Astable frequency (f) = $\frac{1.44}{(R_a + 2R_b)C}$
output high time (t_1) = 0.693 (R_a + R_b)C
output low time (t_2) = 0.693 (R_b)C
555 monostable time constant
on time = 1.1 R_aC
Op amp gain (A_v) = $\frac{change in output voltage}{change in input voltage}$
Differential amplifier
output voltage (V_{out}) = $A(V_2 - V_1)$
where A = open loop gain
 V_1 = inverting input voltage

 V_1 = inverting input voltage V_2 = non inverting input voltage

Inverting amplifier

Voltage gain
$$(A_v) = \frac{-R_f}{R_{in}}$$

Non inverting amplifier

Voltage gain =
$$\frac{R_f + R_{in}}{R_{in}}$$

where R_{f} = feedback resistor value in ohms R_{in} = input resistor value in ohms

Moment	= force	× distance
	where	moment is in newton metres force is in newtons distance is in metres
In equili	brium M	$_{c} = M_{ac}$
	where	M_c = clockwise moment M_{ac} = anticlockwise moment
		force
Stress :	cross	sectional area
	where	force is in newtons area is in mm ²
Strain =	chang origi	ge in length nal length
Young n	nodulus (of elasticity = <u>stress</u> strain
Change length ×	in length temp ris	due to change in temperature = coefficient of linear expansion \times original e
	where	coefficient is given length is in m or mm temperature is in °C
Factor o	of safety	= ultimate stress working stress
Heat los	s = u ×	temperature difference \times area
	where	heat loss is in watts u is in W/m ² /°C temperature is in °C area is in m ²
Force =	pressur	e × area
	where	force is in newtons pressure is in newtons per mm ² area is in mm ²
Mechan	ical adva	ntage = $\frac{\text{load moved}}{\text{effort applied}}$
	where	load is in newtons effort is in newtons
Velocity	ratio =	distance moved by effort distance moved by load
Efficiend	cy = <u>M</u>	A × 100 VR (%)