RECOGNISING ACHIEVEMENT

FORMULAE SHEET
for use in GCSE Design \& Technology Examinations

Area of rectangle $=1 \times w$
Area of triangle $=\frac{b \times h}{2}$
Area of circle $=\pi r^{2}$
Circumference of circle $=2 \pi r$
Volume of rectangular prism $=1 \times w \times h$
Volume of cylinder $=$ area of base circle $\times \mathrm{h}$

Volume of cone $=\frac{\text { area of base circle } \times \mathrm{h}}{3}$
$V=I \times R \quad$ where $\left.\quad \begin{array}{l}V=\text { voltage in volts } \\ I=\text { current in amps } \\ R\end{array}\right)=$ resistance in ohms
$P=V \times 1 \quad$ where $\quad P=$ power in watts
$\mathrm{V}=$ voltage in volts
I = current in amps

## Resistors in series

$$
R_{\text {total }}=R_{1}+R_{2}+R_{3} \text { etc. }
$$

## Resistors in parallel

$$
\frac{1}{R_{\text {total }}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \text { etc. }
$$

OR

## Potential divider

Voltage out $=\frac{R_{2}}{R_{1}+R_{2}} \times$ Supply Voltage
(Where $R_{1}$ is connected to supply voltage)

$$
R_{\text {total }}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}
$$

Resistor colour code

| 1st <br> Colour Band <br> 1st Digit |  | 2nd <br> Colour Band <br> 2nd Digit |  | 3rd <br> Colour Band <br> Number of Zeros |  | 4th <br> Colour Band <br> Tolerance |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| Black | 0 | Black | 0 | Black | No zeros | Gold | $5 \%$ |
| Brown | 1 | Brown | 1 | Brown | One zero | Silver | $10 \%$ |
| Red | 2 | Red | 2 | Red | Two zeros |  |  |
| Orange | 3 | Orange | 3 | Orange | Three zeros |  |  |
| Yellow | 4 | Yellow | 4 | Yellow | Four zeros |  |  |
| Green | 5 | Green | 5 | Green | Five zeros |  |  |
| Blue | 6 | Blue | 6 | Blue | Six zeros |  |  |
| Violet | 7 | Violet | 7 | Silver | 0.01 |  |  |
| Grey | 8 | Grey | 8 | Gold | 0.1 |  |  |
| White | 9 | White | 9 |  |  |  |  |

Transistor current gain $\left(h_{f e}\right)=\frac{I_{c}}{I_{b}}$
where $\quad I_{c}=$ collector current in amps
$I_{b}=$ base current in amps

Emitter current $\left(I_{e}\right)=I_{b}+I_{c}$
Voltage gain $=\frac{V_{\text {out }}}{V_{\text {in }}}$
Capacitor time constant $\quad T=C \times R$
where $\quad \mathrm{T}=$ time in seconds
C = capacitance in farads
$R=$ resistance in ohms

## Capacitors in series

$$
\frac{1}{\mathrm{C}_{\text {total }}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}} \text { etc. }
$$

## Capacitors in parallel

$C_{\text {total }}=C_{1}+C_{2}+C_{3}$ etc.
Mark space ratio $=\frac{t_{1}}{t_{2}}$
where $\quad t_{1}$ is mark time in seconds
$\mathrm{t}_{2}$ is space time in seconds
Astable frequency $(f)=\frac{1}{1.4 \times C_{1} \times R_{1}}$

555 astable frequency (f) $=\frac{1.44}{\left(R_{a}+2 R_{b}\right) C}$
output high time $\left(t_{1}\right)=0.693\left(R_{a}+R_{b}\right) C$
output low time $\left(\mathrm{t}_{2}\right)=0.693\left(\mathrm{R}_{\mathrm{b}}\right) \mathrm{C}$

## 555 monostable time constant

on time $=1.1 \mathrm{R}_{\mathrm{a}} \mathrm{C}$

Op amp gain $\left(A_{v}\right)=\frac{\text { change in output voltage }}{\text { change in input voltage }}$

## Differential amplifier

output voltage $\left(\mathrm{V}_{\text {out }}\right)=\mathrm{A}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
where $\quad A=$ open loop gain
$\mathrm{V}_{1}=$ inverting input voltage
$\mathrm{V}_{2}=$ non inverting input voltage

Inverting amplifier
Voltage gain $\left(A_{v}\right)=\frac{-R_{f}}{R_{\text {in }}}$

Non inverting amplifier
Voltage gain $=\frac{R_{f}+R_{\text {in }}}{R_{\text {in }}}$
where $\quad R_{f}=$ feedback resistor value in ohms
$R_{\text {in }}=$ input resistor value in ohms

Moment $=$ force $\times$ distance
where moment is in newton metres
force is in newtons
distance is in metres
In equilibrium $M_{c}=M_{a c}$
where $\quad M_{c}=$ clockwise moment
$\mathrm{M}_{\mathrm{ac}}=$ anticlockwise moment
Stress $=\frac{\text { force }}{\text { cross sectional area }}$
where force is in newtons area is in $\mathrm{mm}^{2}$

Strain $=\frac{\text { change in length }}{\text { original length }}$
Young modulus of elasticity $=\frac{\text { stress }}{\text { strain }}$
Change in length due to change in temperature $=$ coefficient of linear expansion $\times$ original length $\times$ temp rise
where coefficient is given length is in m or mm temperature is in ${ }^{\circ} \mathrm{C}$

Factor of safety $=\frac{\text { ultimate stress }}{\text { working stress }}$
Heat loss $=u \times$ temperature difference $\times$ area
where heat loss is in watts $u$ is in $W / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ temperature is in ${ }^{\circ} \mathrm{C}$ area is in $\mathrm{m}^{2}$

Force $=$ pressure $\times$ area
where force is in newtons pressure is in newtons per $\mathrm{mm}^{2}$ area is in $\mathrm{mm}^{2}$

Mechanical advantage $=\frac{\text { load moved }}{\text { effort applied }}$
where load is in newtons
effort is in newtons
Velocity ratio $=\frac{\text { distance moved by effort }}{\text { distance moved by load }}$
Efficiency $=\frac{\mathrm{MA} \times 100}{\mathrm{VR}}(\%)$

