Candidate Name

Centre Number

Candidate Number

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

General Certificate of Secondary Education

DESIGN AND TECHNOLOGY
(RESISTANT MATERIALS TECHNOLOGY)

1956/2 1056/2

PAPER 2 HIGHER TIER

Specimen Paper 2003

1 hour 15 minutes

Candidates answer on the question paper.

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

Dimensions are given in mm unless stated otherwise.

Total marks for this paper is 50.

FOR EXAM	NER'S USE
1	
2	
3	
4	
5	
TOTAL	

1 Fig. 1 shows a bookend to be used in a school library. The bookend is made from sheet metal 1.6 mm thick.

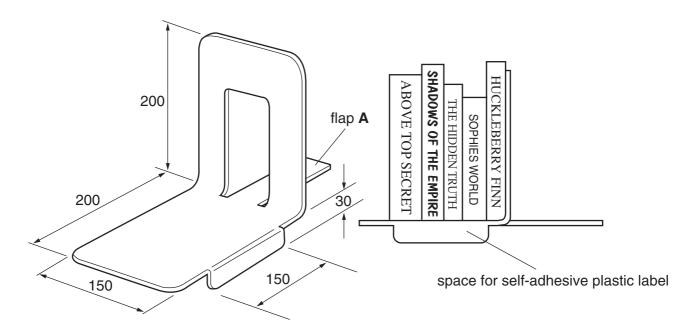
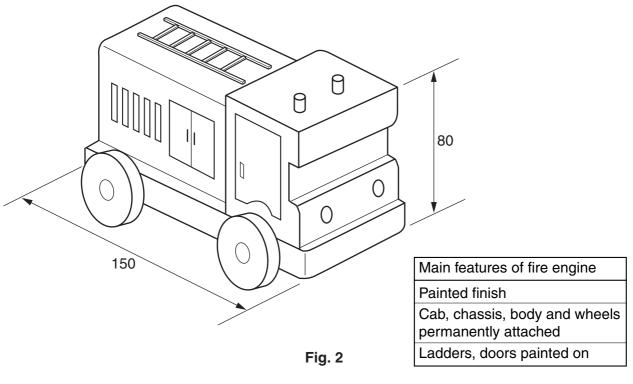


Fig. 1

(a) (i) The bookend could be made from either sheet aluminium or sheet steel. State **one** reason for choosing either aluminium or steel for the bookend.

(ii) State **two** advantages, not including speed, for manufacturing the bookend shape by the process "pressing".


1 ______[1]
2

(iii) The bookend could also be made from a plastic. Explain **one** advantage to the environment of using metal rather than plastic.

_____[2]

	Explain clearly how you could use a computer to design and make a suitable self-adhe plastic label.	sive
		[3]
(c)	Quality control would be carried out during manufacture to ensure that the product me the required standard.	
	Describe two quality control checks you would make during manufacture. 1	_[1]
	2	_[1]

2 Fig. 2 shows a toy fire engine made from solid wood suitable for use by children aged 3-6 years.

(a) Name a solid wood commonly used in the manufacture of children'	's toy	ys
---	--------	----

Г	1	1
 _L '	٠,	J

(b) Describe **two** ways in which the design of the fire engine could be considered suitable for a child age 3-6 years.

1 _____

_____[1]

(c) State **two** ways in which the designer has considered mass-production in the design of the fire engine.

1 _____

2 _____

_____[1

(u)	State two reasons why consumers would choose to buy a toy made from plastics rath than solid wood.		
	[1]	
	?[1]	

(e) Use notes and sketches to show **one** improvement you could make to the design of the fire engine to make a more exciting toy.

3 Fig. 3 shows the basic design for a small adjustable mirror. The side view shows details of a mirror tile and its backing material.

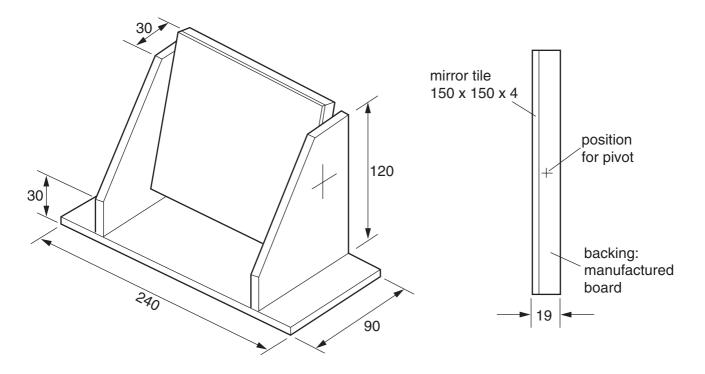
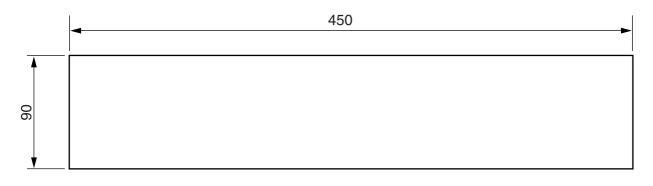



Fig. 3

(a) The base and uprights are to be made from a single length of hardwood as shown in Fig. 4. Complete Fig. 4 to show how the base and uprights should be marked out to avoid wasting hardwood.

scale 1:3

Fig. 4

[3]

Fig. 5 shows a side view of the adjustable mirror with the right hand upright removed. The mirror is pivoted between the uprights and is to be held at any angle between $0^{\circ} - 45^{\circ}$.

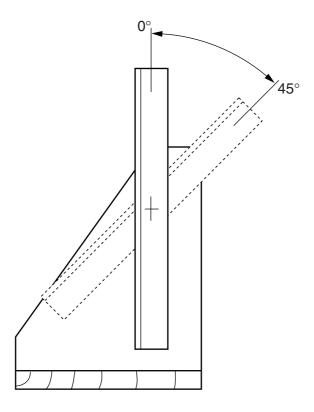
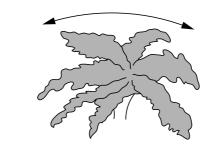



Fig. 5

(b) In the space below, use notes and sketches to show a suitable pivot and a locking method by which the mirror can be held at any angle, $(0^{\circ} - 45^{\circ})$, between the uprights. Name the materials and any fittings used.

4 Fig.6 shows part of a window display for use by a travel agent. The palm tree moves as shown by the arrows.

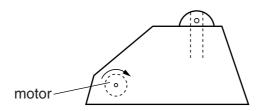


Fig. 6

(a) Name the type of motion made by the palm tree.

_____[1]

(b) Complete Fig. 7 to show the missing linkage mechanism from the motor to the palm tree in order to produce the required motion.Label the diagram.[5]

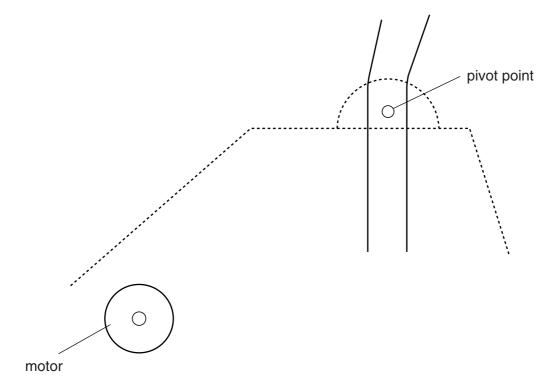


Fig. 7

5 Fig. 8 shows outline views of a video cassette storage unit to be made in a school workshop.

The unit is to hold 10 video cassettes.

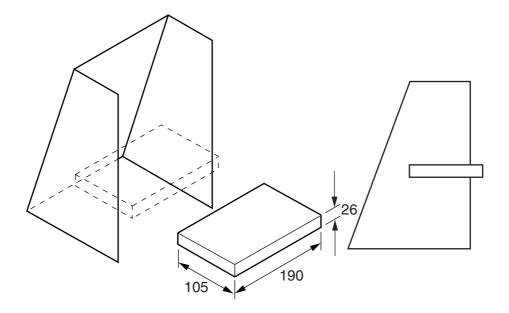


Fig. 8

- (a) Using notes and sketches develop a design for the unit. Your design must show:
 - an arrangement for ensuring that the front edges of the video cassettes line up vertically;
 - how the video cassettes are easily accessible;
 - details of the sizes of your chosen materials.

BLANK PAGE