

1 hour

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

General Certificate of Secondary Education

D&T: Resistant Materials

Technology

D&T: Resistant Materials Technology (Short Course)

PAPER 1 FOUNDATION TIER

25 MAY 2006

Candidates answer on the question paper. No additional materials are required.

Candidate Name						
Oceanie			O a malia			
Centre Number			Candio Numbe			

Morning

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

Thursday

- Write your name, Centre number and candidate number in the spaces at the top of this page.
- Answer all questions.
- Write your answers in the spaces provided on the question paper.
- Do not write in the bar code. Do not write in the grey area between the pages.
- DO NOT WRITE IN THE AREA OUTSIDE THE BOX BORDERING EACH PAGE. ANY WRITING
 IN THIS AREA WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

Dimensions are given in millimetres unless stated otherwise.

Total marks for this paper is 50.

FOR EXAMI	INER'S USE
1	
2	
3	
4	
5	
TOTAL	

This question paper consists of 11 printed pages and 1 blank page.

1 Fig. 1 shows a toy boat made mainly from wood.

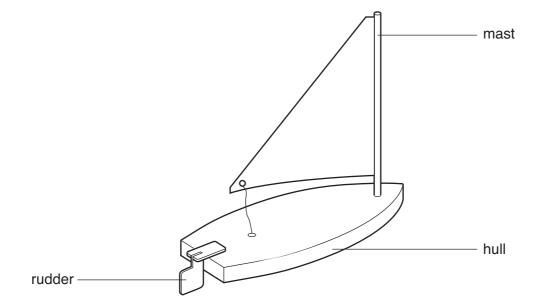


Fig. 1

(a) The mast is made from a length of round wood. Give the correct name for round wood.

_____[1]

Fig. 2 shows the hull of the toy boat marked out on a piece of solid wood.

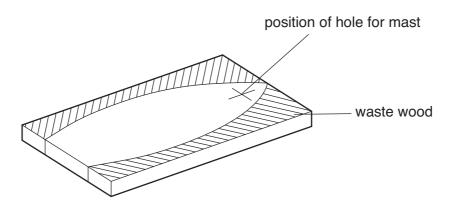


Fig. 2

(b) Complete the table by naming the tool or item of equipment used to make the hull.

Stage	Process	Name of tool or item of equipment
1	Cut off the waste wood	[1]
2	Make the hole for the mast	[1]
3	Smooth the sides of the hull	[1]

(c)	In the space below draw a template that could be used to mark out the shape of the hull.
	Mark the position of the hole for the mast on the template.

[2]

(d) Give two reasons why the toy boat is suitable for children.

1	[1]
2	[1]

(e) Fig. 3 shows part of the hull and the rudder.

Add sketches and notes to Fig. 3 to show how the rudder could:

- be attached to the hull; and
- be able to move from side to side.

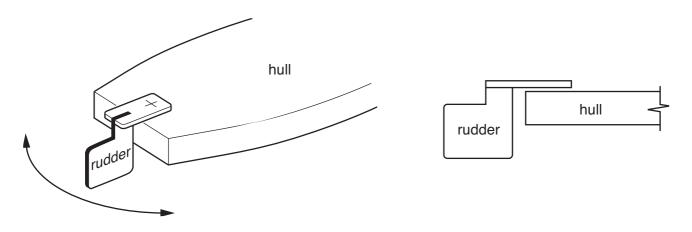


Fig. 3

[Turn over

[2]

2 Cyclists often need to carry out maintenance to their bicycles.

(a) State **two** important items of information you would need to find out before designing a bicycle maintenance stand.

1	[1]
2	[1]

Fig. 4 shows views of an adjustable bicycle stand made from mild steel. The stand is used when carrying out maintenance.

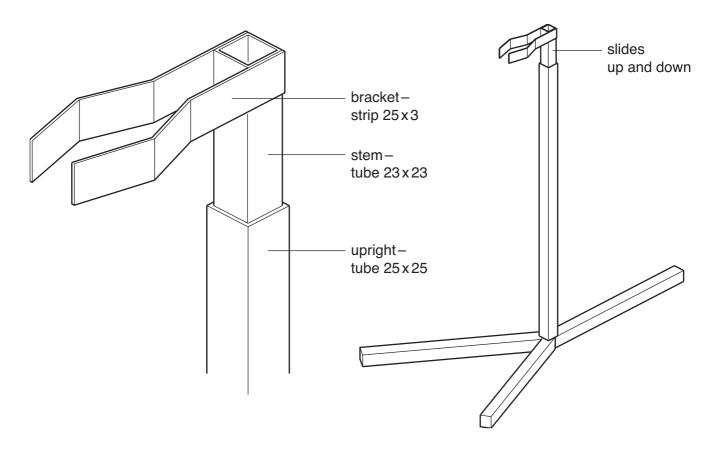


Fig. 4

(b)		brackets will be brazed to the stem. te the purpose of the following when preparing and brazing the joint:	
	(i)	emery cloth	_[1]
	(ii)	flux	_[1]
	(iii)	brazing rod	[1]
(c)	Sta	te one safety precaution that would need to be taken when brazing.	
			_[1]
(d)	Nar	ne a suitable finish that could be applied to the mild steel bicycle stand.	
			[1]
(e)	Use	e stem shown in Fig. 4 is able to move up and down. e sketches and notes to show how the stem could be adjusted and locked at three differ ghts.	erent

3 Fig. 5 shows views of an **incomplete** design for a flower holder. The back and base are made from 5 mm thick acrylic plastic. The flower is held in a test tube.

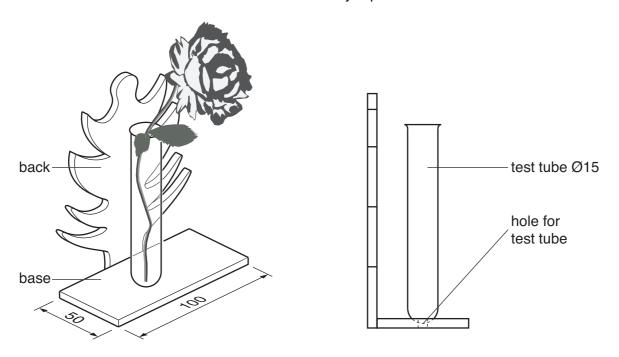


Fig. 5

(a) Fig. 6 shows the back of the flower holder marked out on a piece of acrylic sheet.

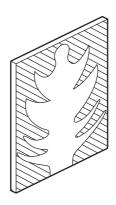
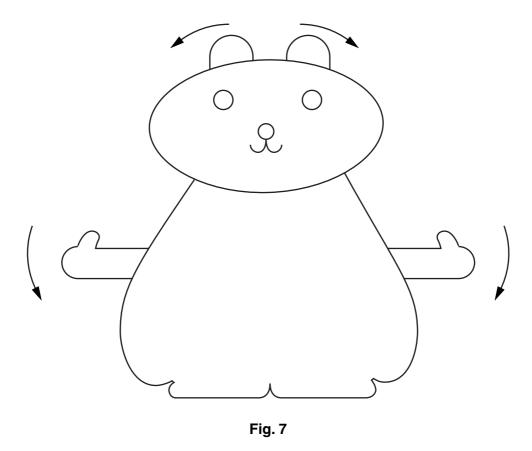


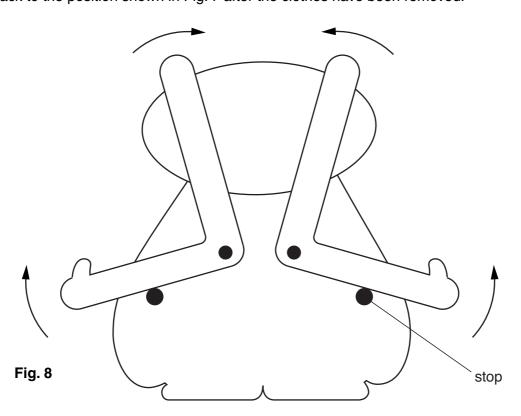
Fig. 6

Complete the table below by naming the tool or item of equipment used to make the back of the flower holder.


Stage	Process	Name of tool or item of equipment
1	Mark out the shape	[1]
2	Cut out the shape	[1]
3	Smooth the edges	[1]

- **(b)** The test tube in Fig. 5 sits in a hole in the base. Use sketches and notes to design a drilling jig for the hole. The jig must:
 - accurately locate the base;
 - hold the base securely;
 - accurately locate the hole.

[3]


(c) The test tube in Fig. 5 is shown without any means of support. Use sketches and notes to show a method of supporting the test tube.

4 Fig. 7 shows the front view of a novelty clothes hook made from 6 mm thick plastic. When clothes are hung over the hands, the ears move as shown.

(a) Fig. 8 shows the back of the clothes hook.

Add sketches and notes to Fig. 8 to show how the arms and ears could be made to move back to the position shown in Fig. 7 after the clothes have been removed.

arts of the clothes hook will be injection moulded.
ate one reason why injection moulding can be an expensive manufacturing process.
ve two quality control checks that could be carried out during manufacture of the clooks.
ne clothes hook has been designed to satisfy a specific market. entify the market for this product.
\ \ -

5 Fig. 9 shows views of two different shelf and bracket designs. Both designs are manufactured and sold as self-assembly products.

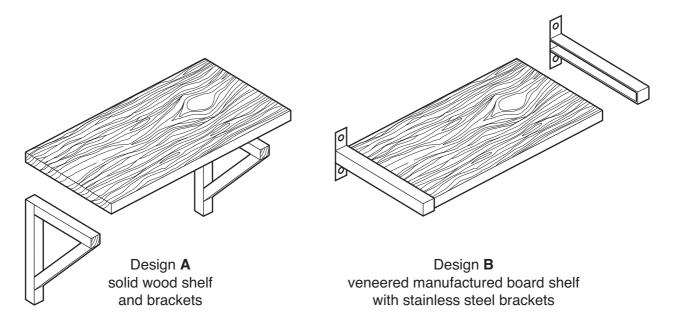


Fig. 9

(a)		te one reason why a finish would be applied to the parts of Design A before they embled.	are
(b)	Sta	te two advantages of using a manufactured board for the shelf in Design B .	[1]
	1_		_[1]
	2_		_[1
(c)	Exp	plain which of the two designs would be more expensive to manufacture in quantity.	
			_[2
(d)	(i)	State one advantage to the consumer of buying self-assembly products.	
			_ [1]
	(ii)	State one advantage to the manufacturer of producing self-assembly products	
			[1]

(e) Use sketches and notes to show **one** improvement that could be made to **either** Design **A or** Design **B**.

PLEASE DO NOT WRITE ON THIS PAGE