	SPECIMEN
General Certificate of Secondary Education Design and Technology: Electronics and Control Systems: Pneumatics	A514/02
Unit A514: Technical aspects of designing and making	
Specimen Paper	
Candidates answer on the question paper. Additional materials:	Time: 1 hour 15 minutes
Candidate Candidat Forename Surname	
	ndidate
 INSTRUCTIONS TO CANDIDATES Write your name in capital letters, your Centre Number ar Use black ink. Pencil may be used for graphs and diagrar Read each question carefully and make sure you know w Answer all the questions. Do not write in the bar codes. Do not write outside the box bordering each page. Write your answer to each question in the space provided INFORMATION FOR CANDIDATES The number of marks for each question is given in brack question. Your Quality of Written Communication is assessed in quemarked with an asterisk (*). The total number of marks for this paper is 60. 	ns only. hat you have to do before starting your answer. ets [] at the end of each question or part estions
	FOR EXAMINER'S USE
	2
	3
	4
	5
	TOTAL
This document consists of 1	P printed pages

	This document consist	s of 12 printed pages.	
SP (SLM) T12103	© OCR 2008 [500/4553/2	OCR is an exempt Charity	[Turn over

Answer **all** questions.

Section A

1 Fig. 1 shows a city tram and a close-up of the pneumatically operated sliding door.

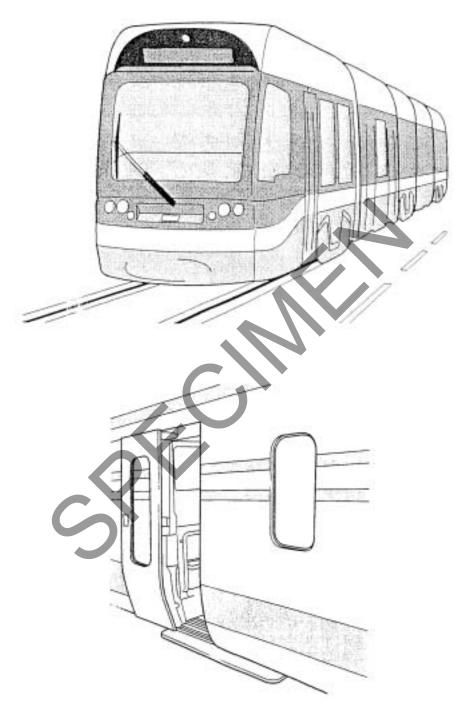
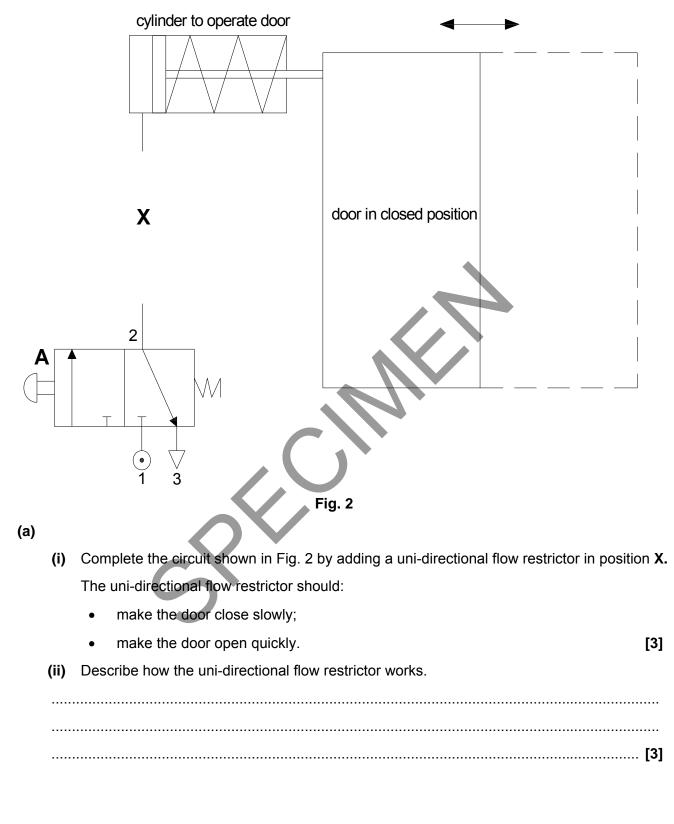


Fig. 1

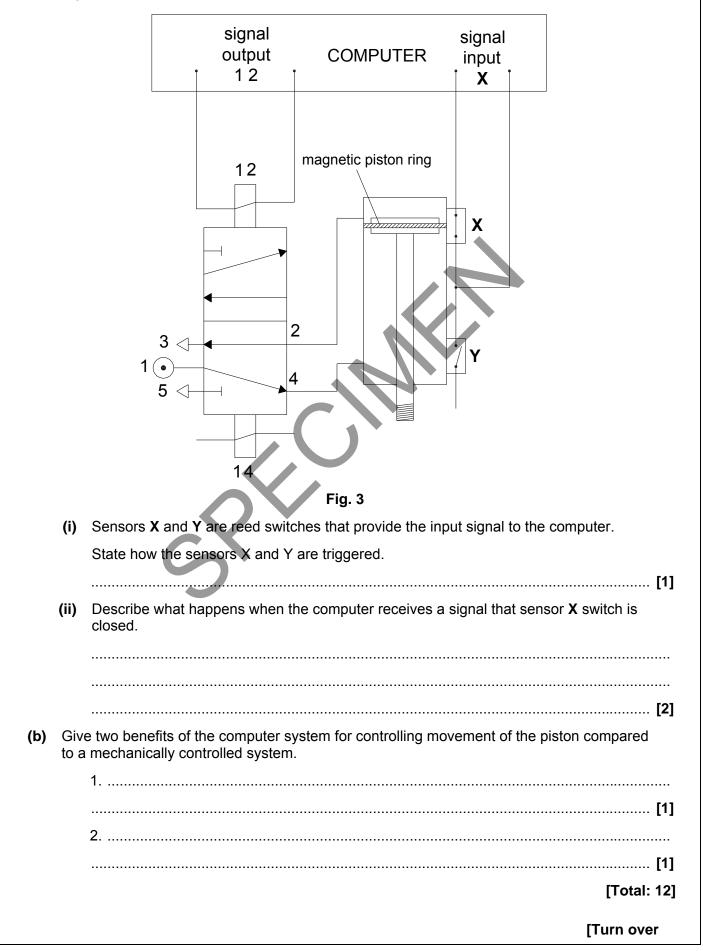

(a) The table below shows the name and symbol for components in a pneumatically operated door system.

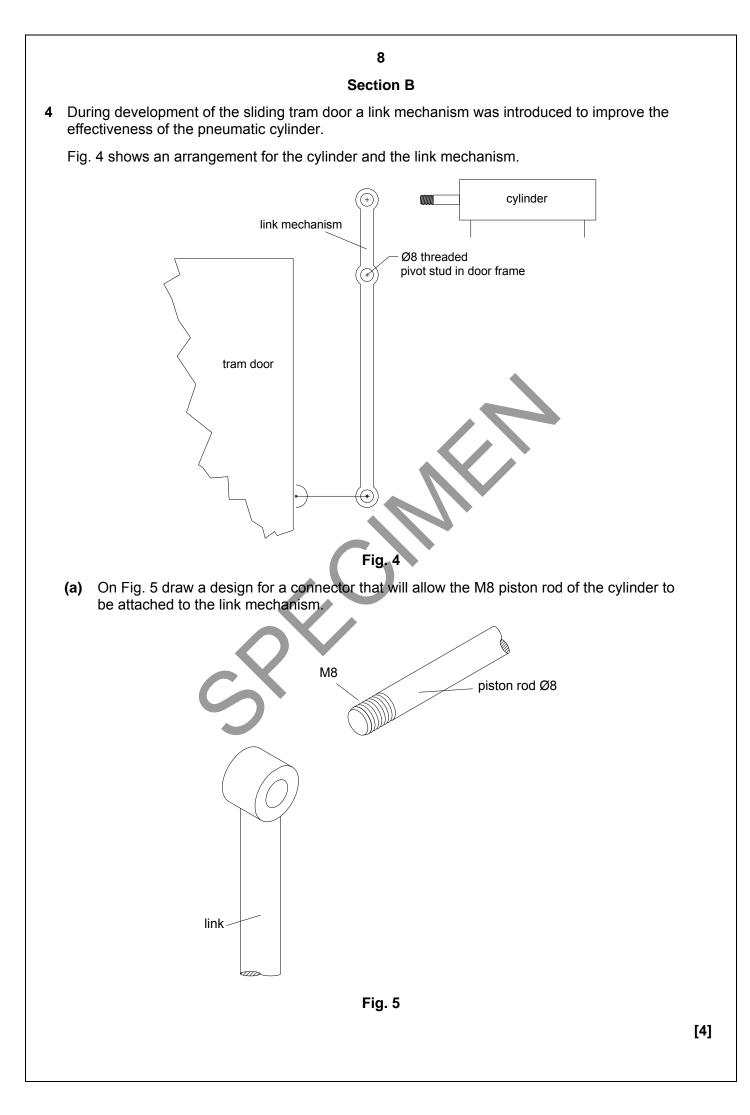
Complete the table by drawing the missing symbols and adding the missing names. The first one has been done for you.

	Component Name	Component Symbol	
	A exhaust		
	B reservoir		[1]
	C air supply		[1]
	D single acting spring return cylinder		[2]
	E		[2]
	F shuttle valve		[2]
(b)	Give two reasons for using a reservoir in a		
(c)	2 Discuss why component F , the shuttle value door systems.	ve, is often used in pneumatically operate	
			[2]
			[Total: 12]

3

2 An incomplete circuit to control a pneumatically operated sliding door for a tram is shown in Fig. 2.

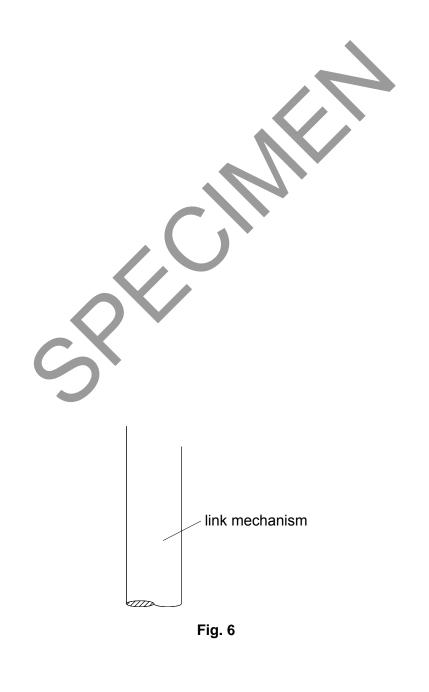

4

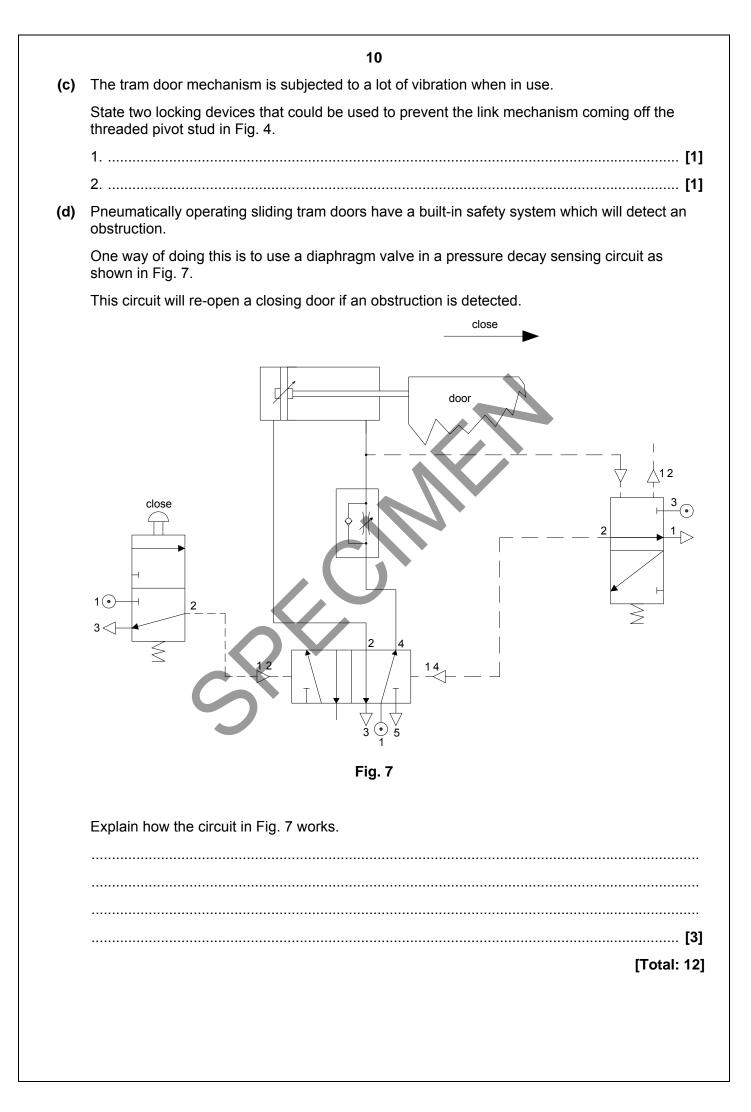

		5
(b)		e compressed air supply on the tram includes an air receiver (reservoir). e air receiver is fitted with:
	•	a safety valve;
	•	a pressure regulator with a gauge;
	•	a drain valve.
	Exp	plain why the following components are essential to the safe operation of the system.
	(i)	Safety valve
	(ii)	Pressure regulator with a gauge.
(c)		
	(i)	State the purpose of a drain valve.
		[1]
	(ii)	Give one consequence of not making use of a drain valve. [1]
		[Turn over

• a	Discuss how manufacturers of tram doors use computers to: aid the design process; est circuits
• t	est circuits
	[6]
(b) A	A manufacturing company is considering changing its manually operated machines to
(CNC machines.
ę	State one possible effect on the workforce.
	[1]

(a) Computer controlled pneumatically operated manufacturing machines require a connection between the computer and the pneumatic circuit.

Fig. 3 shows the components that connect the computer to an incomplete pneumatic circuit.




(b) When the cylinder was connected to the link mechanism and bolted rigidly to the door frame the link mechanism moved very little. The door would not fully open or fully close.

Draw on Fig. 6 a modification to the top of the link mechanism to allow:

- the link mechanism to move in an arc;
- the cylinder to remain horizontal.

[3]


		11
5	Асу	linder is required for the sliding door operation.
	The 10m	cylinder chosen for this operation has a bore diameter of 32mm and a piston rod diameter of nm.
	Tes	ts show that a force of 100N is required to close the sliding door on the outstroke.
	(a)	Calculate the minimum air pressure supply required to close the door.
		Use the formula $F = P \times A$.
		[4]
	(b)	When the system was tested the door closed but when the 'open' button was pressed nothing happened.
		The components and circuitry had been correctly connected.
		Explain the reason for the door not opening on the instroke .
		[3]
	(c)	Describe how the problem could be solved without changing any of the components.
		[1]

[Turn over

(d) To prevent the tram moving before the doors are fully closed an air bleed occlusion circuit is installed.

The circuit uses a diaphragm operated spring return valve.

Complete Fig. 8 by drawing the diaphragm valve needed to send an air supply to the tram control when the door is closed.

Copyright Acknowledgements:

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2008

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

General Certificate of Secondary Education

DESIGN & TECHNOLOGY

A514/02

Electronics and Control Systems: Pneumatics

Unit A514: Technical aspects of designing and making:

Specimen Mark Scheme

The maximum mark for this paper is **60**.

Question Number	Answer	Max Mark
1(a)	The table below shows the name and symbol for components in a pneumatically operated door system. Complete the table by drawing the missing symbols and adding the missing names. The first one has been done for you.	
	Component Name Component Symbol	
	A exhaust —>	
	B reservoir [1]	
	C air supply [1]	
	D single acting spring return cylinder [2]	
	E Plunger operated [1] -3/2-[1] [2]	
	F shuttle valve	
		[8]
1(b)	Give two reasons for using a reservoir in a pneumatic system. The reservoir compensates for pressure fluctuations in the system, 1 markThe compressor does not need to run continuously, 1 mark Allow marks for understanding of each feature.	[2]
1(c)	Discuss why component F, the shuttle valve, is often used in pneumatically operated tram door systems. Discussion may include reference to: Component B, the shuttle valve, is often included in sliding door systems	
	because it allows the operation of the door from each side It is an OR gate,	[2]

Question Number	Answer	Max Mark
2(a)(i)	 Complete the circuit shown in Fig. 2 by adding a uni-directional flow restrictor in position X. The uni-directional flow restrictor should: make the door close slowly; make the door open quickly. 	
	drawing [2], orientation [1]	
	door in closed position	
		[3]
2(a)(ii)	Describe how the uni-directional flow restrictor works. A uni-directional restrictor works by allowing air to pass unrestricted through one way by blowing the ball away, 1 mark;	
	but in the opposite direction the ball is blown into the socket, 1 mark; and the air must pass through the restrictor, 1 mark.	[3]
2(b)(i)	The compressed air supply on the tram includes an air receiver (reservoir). The air receiver is fitted with:	
	a safety valve;a pressure regulator with a gauge;	
	 a drain valve. 	
	Explain why the following components are essential to the safe operation of the system.	
	 (i) Safety valve The safety valve is an essential part of the compressed air system because if the compressor fails to shut off, and the pressure rises too high, it will release the pressure and prevent the receiver from exploding. 1 mark for problem identified, 1 mark for consequence identified. 	[2]

Section A Question	_	Мах
Number	Answer	Mark
(ii)	Pressure regulator with a gauge.	
	The pressure regulator with valve allows the pressure to be regulated and	
	displayed on a gauge. 1 mark for regulation, 1 mark for display.	[2]
	Thank for regulation, Thank for display.	[~]
2(c)(i)	State the purpose of a drain valve.	
	The drain valve is used to remove condensation from the air supply	
	system.	[1]
2(c)(ii)	Give one consequence of not making use of a drain valve.	
	Possible damage to interior of receiver tank or other components in the	
	system.	[1]
3(a)*	Discuss how manufacturers of tram doors use computers to:	
()	 aid the design process; 	
	test circuits	
	Level 1 (0-2 marks) Basic discussion, showing limited understanding of how computers can	
	be used in these processes	
	There will be little or no use of specialist terms. Answers may be	
	ambiguous or disorganised. Errors of grammar, punctuation and spelling may be intrusive.	
	Level 2 (3-4 marks)	
	Adequate discussion, showing some understanding of how computers can be used in these processes	
	There will be some use of specialist terms, although these may not	
	always be used appropriately. The information will be presented for the	
	most part in a structured format. There may be occasional errors in spelling, grammar and punctuation	
	Level 3 (5-6 marks)	
	Thorough discussion, showing detailed understanding of how computers can be used in these processes	
	Specialist terms will be used appropriately and correctly. The information	
	will be presented in a structured format. The candidate can demonstrate	
	the accurate use of spelling, punctuation and grammar.	
	Discussion may include:	

Question Number	Answer	Max Mark
3(a)	Accuracy of drawing;	
cont'd	Ability to copy and paste components;	
	Quicker to draw complex designs;	
	Easy to draw and save images;	
	 Make changes to existing drawings easily; To hole events the integrity of the circuit. 	
	To help evaluate the integrity of the circuit;	
	To test the flow; To test the visbility of different components:	
	 To test the viability of different components; To find problems and solve them through simulation 	[6]
	 To find problems and solve them through simulation. 	[6]
3(b)	A manufacturing company is considering changing its manually operated machines to CNC machines. State one possible effect on the workforce.	
	Possible effects could include:	
	Loss of workforce;	
	Need to retrain for new technology.	
	2 x 1 marks.	[1]
3(c)(i)	Sensors X and Y are reed switches that provide the input signal to the computer.	
	State how the sensors X and Y are triggered.	F41
	The switches are closed by the magnetic insert on the piston.	[1]
3(c)(ii)	Describe what happens when the computer receives a signal that sensor X switch is closed.	
	When the computer receives a signal from X it then sends a signal to the 5/2 solenoid valve.	
	1 mark for signal from switch to computer,	101
	1 mark for computer sending signal to valve.	[2]
3(d)	Give two benefits of the computer system for controlling movement of the piston compared to a mechanically controlled system.	
	Benefits could include:	
	 Ease of introducing delays to the system; 	
	Ease of changing delays;	
	Lower cost than discrete components.	
	2 x 1 marks for suitable benefits.	[2]

Question	Answer	Max
Number		Mark
4(a)	On Fig. 5 draw a design for a connector that will allow the M8 piston rod of the cylinder to be attached to the link mechanism.	
	Locknut [1]	
	• Slot [1]	
	• Pin [1]	
	Pin retaining [1]	[4]
4(b)	When the cylinder was connected to the link mechanism and bolted rigidly to the door frame the link mechanism moved very little. The door would not fully open or fully close.	
	Draw on Fig. 6 a modification to the top of the link mechanism to allow:	
	the link mechanism to move in an arc;	
	the cylinder to remain horizontal.	
	Modification should have: • Slot [1]	
	Wall thickness [1]	
	Washer / quality of drawing [1]	[3]
		[•]
4(c)	The tram door mechanism is subjected to a lot of vibration when in	
	use.	
	State two locking devices that could be used to prevent the link mechanism coming off the threaded pivot stud in Fig. 4.	
	Locking devices could include:	
	 Nyloc nut / stiff nut / aero nut; 	
	Split pin;	
	Castle nut;	
	Double nuts;	
	Loctite.	
	Any two suitable methods 1 mark each.	[2]

Question Number	Answer	Max Marl
4(d)	Pneumatically operating sliding tram doors have a built-in safety	
	system which will detect an obstruction.	
	One way of doing this is to use a diaphragm valve in a pressure	
	decay sensing circuit as shown in Fig. 7. This circuit will re-open a closing door if an obstruction is detected.	
	Explain how the circuit in Fig. 7 works.	
	When the piston stops moving forward, the pressure in the exhaust line	
	and pilot line to the diaphragm valve reduces, [1]	
	When this happens the diaphragm will be reset by the spring. [1]	
	This causes a pilot signal to be sent to the 5/2 valve. [1]	
	This causes the direction of the air flow to the cylinder to be reversed. [1]	
	Re-pressurising the pilot line then causes the valve to signal the piston	
	to instroke.[1]	[0]
	3 x 1 marks, allow any three correct.	[3]
5(a)	Calculate the minimum air pressure supply required to close the	
	door. Use the formula F = P x A.	
	$F = P \times A$	
	R = D/2 = 32/2 = 16 [1]	
	$100 = P \times \pi \times 16^2$ [1]	
	$P = 100 / \pi \times 16^2$ [1]	
	$P = 0.12N/mm^2$ [1]	[4]
5(b)	When the system was tested the door closed but when the 'open'	
	button was pressed nothing happened.	
	The components and circuitry had been correctly connected.	
	Explain the reason for the door not opening on the instroke.	
	The minimum pressure calculated was based on the full area of the	
	piston. [1] On the instroke the area of the piston rod must be considered. [1]	
	The result is less area for the pressure to act on. [1]	
	Resulting in less force being produced. [1]	
	Any three points correct for marks, 3 x 1.	[3]
5(c)	Describe how the problem could be solved without changing any of	
	the components.	
	Increase the air supply pressure.	[1]

Section B		
Question Number	Answer	Max Mark
5(d)	To prevent the tram moving before the doors are fully closed an air bleed occlusion circuit is installed. The circuit uses a diaphragm operated spring return valve. Complete Fig. 8 by drawing the diaphragm valve needed to send an air supply to the tram control when the door is closed. Candidates are required to analyse the circuit and insert the valve in the correct position.	Mark
		[4]
	Paper Total	[60]

Question	AO1	AO2	AO3	Total
1(a)	8			8
1(b)	2			2
1(c)			2	2
2(a)	6			6
2(b)	4			4
2(c)	1		1	2
3(a)*			6	6
3(b)	1			1
3(c)	3			3
3(d)	2			2
4(a)	4			4
4(b)	3			3
4(c)	2			2
4(d)	3			3
5(a)	4			4
5(b)	3			3
5(c)	1			1
5(d)	4			4
Totals	51	0	9	60

Assessment Objectives Grid (includes QWC)