| Surname | е | | | Other | Names | | | | | |---------------------|-----|--|--|-------|-------|-------|-------------|--|--| | Centre Numl | ber | | | | | Candi | date Number | | | | Candidate Signature | | | | | | | | | | | Leave blank | | |-------------|--| General Certificate of Secondary Education June 2005 # DESIGN AND TECHNOLOGY (ELECTRONIC PRODUCTS) (SHORT COURSE) Foundation Tier 3551/F F Thursday 16 June 2005 1.30 pm to 3.00 pm #### In addition to this paper you will require: - blue or black pen, pencil, coloured pencils and ruler; - an Insert Sheet (enclosed). You may use a calculator. Time allowed: 1 hour 30 minutes #### **Instructions** - Use blue or black ink or ball-point pen. - Fill in the boxes at the top of this page. - Answer all questions in the spaces provided. - Use the Insert Sheet included to help you answer Question 1. - Do all rough work in this book. Cross through any work you do not want marked. #### **Information** - The maximum mark for this paper is 100. - Mark allocations are shown in brackets. - A list of formulae and other information is given on pages 2 and 3 which you may need to use when answering certain questions. - Wherever calculations are needed you should show your working. - You are reminded of the need for good English and clear presentation. | For Examiner's Use | | | |---------------------|------|--| | Number | Mark | | | 1 | | | | 2 | | | | 3 | | | | 4 | | | | 5 | | | | TOTAL | | | | Examiner's initials | | | TP/0205/3551/F 6/6 3551/F # You may need to use one or more of the following formulae when answering questions which include calculations. Potential Difference = Current \times Resistance $(V = I \times R)$ Series Resistors $R_{total} = R_1 + R_2 + R_3$ etc Electrical Power = Current \times Potential Difference $(P = I \times V)$ Potential Divider Time Constant \simeq Resistance \times Capacitance $(T \simeq R \times C)$ Astable Frequency for 555 $f = \frac{1.44}{(R_1 + 2R_2) \times C}$ Pulse duration $=\frac{1}{\text{frequency}}$ ### You may need to use the following information when answering some of the questions. Capacitor series 10, 22, 47 #### Resistor Colour Code | Colour | Band 1 | Band 2 | Band 3
(No. of 0s) | Band 4
(Tolerance) | |--------|--------|--------|-----------------------|-----------------------| | Black | 0 | 0 | None | | | Brown | 1 | 1 | 0 | | | Red | 2 | 2 | 00 | | | Orange | 3 | 3 | 000 | | | Yellow | 4 | 4 | 0000 | | | Green | 5 | 5 | 00000 | | | Blue | 6 | 6 | 000000 | | | Violet | 7 | 7 | _ | | | Grey | 8 | 8 | _ | | | White | 9 | 9 | _ | | | | | | | Gold = 5% | | | | | | Silver = 10% | ## TURN OVER FOR THE FIRST QUESTION #### Answer all questions in the spaces provided. - 1 Figure 1 on the Insert Sheet shows eight different electronic components. - (a) Complete **Figure 2** below by both naming and drawing the electronic symbol for each component. Some parts have been completed as examples. | Component | Full Name | Symbol | |-----------|------------------------|--------------| | A | | | | В | | \bigotimes | | С | | | | D | Electrolytic Capacitor | | | E |
Switch | ─ | | F | | 7 | | G | Fuse | | | Н | | | Figure 2 (10 marks) | (b) | Name a component that is described by each statement below. | | |-----|--|-----------| | | (i) It has a resistance that changes as temperature changes. | | | | | (1 mark) | | | (ii) It is used to limit the amount of current flow. | | | | | (1 mark) | | | (iii) It will store a small charge of electricity. | | | | | (1 mark) | | | (iv) It has three leads called anode, cathode and gate. | | | | | (1 mark) | | (c) | Calculate the total resistance of the combination shown in Figure 3 . | | | | | | | | 270R 330R | | | | Figure 3 | | | | Formula | | | | Working | | | | | | | | | | | | Answer with units | (3 marks) | | (d) | Complete Figure 4 to show the colour code of a 680R resistor with a +/–5% tolerance | | | | | | | | | | | • | | ••••• | | | | | | | Figure 4 | (1 marks) | 2 You have been asked to design an electronic dice to be used by children when playing games. #### **Analysis** (a) List **two** things that you should think about when designing the electronic dice. An example has been given. The likely cost of the whole project including both components and materials. | 1 | | |---|--| | 2 | | (4 marks) #### Research The layout of a research plan for the electronic dice is shown in **Figure 5**. (b) Complete **Figure 5** by adding suitable research sources and stating the information that you would hope to find. (7 marks) Figure 5 | Describe how the information from the analysis and research may affect the final design. | | |---|---| | | | | | | | | | | | narks) | | Give four specification points for the electronic dice. Two of the points should be abocasing and two about the electronics. Examples have been given. | ut the | | (i) Casing specifications | | | Not too heavy – so that it can be used by young children. | | | 1 | | | | | | (ii) Electronic specifications | iai ks) | | The numbers will be made up from arrangements of 5 mm LEDs. | | | 1 | | | 2(4 n |
narks) | | | Give four specification points for the electronic dice. Two of the points should be abo casing and two about the electronics. Examples have been given. (i) Casing specifications Not too heavy – so that it can be used by young children. 1 | $\frac{1}{21}$ TURN OVER FOR THE NEXT QUESTION | This ques | stion is about designing, making and evaluating the electronic dice. | | |-----------|---|---| | (a) (i) | Use notes and sketches to show: a design for the casing of the dice; how the dice is switched on and activated. Quality of community | (4 marks)
(2 marks)
ication (2 marks) | | | | | | | | | | (ii) | Give the name of a suitable material from which the casing could be made Material | | | (iii) | Use notes and sketches to show: a suitable method of fitting an LED into the case; how the circuit is securely held in place in the casing. | (1 mark) (2 marks) (3 marks) | 3 | (b) | (b) List two situations where health and safety hazards might be an issue whilst making the and give the precaution that you would need to take. | | | | | |-----|---|---|--|--|--| | | Situation 1 | · • • • • • • • • • • • • • • • • • • • | | | | | | Precaution | | | | | | | Situation 2 | | | | | | | Precaution | · • • • • • • • • • • • • • • • • • • • | | | | | | (4 ma | | | | | | (c) | Explain two methods of evaluating the finished dice. | | | | | | | 1 | | | | | | | | | | | | | | 2 | | | | | | | (4 ma | | | | | | (d) | Give two reasons why quality checks need to be made during the making of electronic produc | ets. | | | | | | 1 | | | | | | | | | | | | | | 2 | | | | | | | (4 ma | rks) | | | | $\left(\frac{}{26}\right)$ ### TURN OVER FOR THE NEXT QUESTION 4 Figure 6 shows a block diagram of a fire alarm. - (a) State which block represents - (ii) an input stage - (iii) an astable. (1 mark) - (b) State the block in which you would find - (iii) the control of the frequency of the sound. (1 mark) - (c) **Figure 7** shows a pulse generator circuit used as part of the system. Component C1 helps to control the frequency of the circuit. (i) Circle the **two** components, other than **C1**, in **Figure 7** that control the frequency of the circuit. (2 marks) | C1 was increased. | (ii) Explain the effect on the sound from the loudspeaker if the value of C1 was increased | | | | | |-------------------|--|--|--|--|--| | | | | | | | | (2 marks) | | | | | | (d) Figure 8 shows the incomplete PCB design of the pulse generator stage of the circuit. The pulse generator circuit is shown in **Figure 7**. Viewed from the component side Figure 8 Complete **Figure 8** by adding **five tracks** to the PCB so that: - pin 8 is joined to the +V rail; - pin 7 is joined between R1 and R2; - pin 6 is joined to pin 2; - pins 6 and 2 are joined between R2 and C1; - C2 is joined to the loudspeaker. (5 marks) Quality of drawing (2 marks) - 5 Shown below are areas of electronic design where ICT could be used. - (a) Choose **three** areas from the list, stating when each could be used and explaining **one** advantage for each choice. An example has been given. | Circuit simulation | PCB design | Case design | CAM | |----------------------|-----------------------------|--------------------------|---------------------| | Example Spreadsheets | | | | | When used Calculati | ng the cost of the compo | nents | | | Advantage As I char | nged the circuit design the | e total price of the | | | compone | ents automatically change | d so I could keep contro | ol over my spending | | 1 | | | | | When used | | | (1 mark) | | Advantage | | | | | | | | (2 marks) | | 2 | | | | | When used | | | (1 mark) | | Advantage | | | | | | | | (2 marks) | | 3 | | | | | When used | | | (1 mark) | | Advantage | | | | | | | | (2 marks) | | manufacturing. | |--| | Explain one advantage and one disadvantage that these developments have had for the environment. | | Advantage | | | | (3 marks) | | Disadvantage | | | | (3 marks) | END OF QUESTIONS # THERE ARE NO QUESTIONS PRINTED ON THIS PAGE # THERE ARE NO QUESTIONS PRINTED ON THIS PAGE # THERE ARE NO QUESTIONS PRINTED ON THIS PAGE # DESIGN AND TECHNOLOGY: ELECTRONIC PRODUCTS FULL AND SHORT COURSE 3541F/3551F # The photographs on this sheet are for use in answering: Foundation Tier: Question 1 Figure 1 Images A-G reproduced with kind permission of Rapid Electronics Ltd.