@ Pearson

Edexcel

Examiners’ Report

Principal Examiner Feedback

June 2022

Pearson Edexcel GCSE In
Computer Science (1CP2/02)

Paper 2: Application of Computational
Thinking

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK’s largest awarding body.
We provide a wide range of qualifications including academic, vocational, occupational and
specific programmes for employers. For further information visit our qualifications websites
at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using
the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world’s leading learning company. Our aim is to help everyone
progress in their lives through education. We believe in every kind of learning, for all kinds
of people, wherever they are in the world. We've been involved in education for over 150
years, and by working across 70 countries, in 100 languages, we have built an international
reputation for our commitment to high standards and raising achievement through
innovation in education. Find out more about how we can help you and your students at:
WWW.pearson.com/uk

June 2022

Publications Code 1CP2_02_ER_20220825

All the material in this publication is copyright
© Pearson Education Ltd 2022

http://www.edexcel.com/
http://www.btec.co.uk/
http://www.edexcel.com/contactus
http://www.pearson.com/uk

Introduction

This is the first examination of the Edexcel GCSE Computer Science (9-1), with the paper two
onscreen exam. The programming language required is Python 3.

Students are supplied with a question paper, a programming language subset document, and a code
file for each question. Students are required to amend the code files and save their work, using a
different file name.

Centres compress the code file responses for each student. The compressed files are uploaded to
Edexcel for external assessment, via the Learner Work Transfer program.

Centre submissions

The ICE document for this series set out the format in which students’ completed code files were to

be submitted. The majority of centres were able to follow the instructions accurately, ensuring that
a single zipped file of the COMPLETED_CODE folder was provided for each student. The submissions
were correctly identified with the centre and student number.

General

Attempting all questions

There were a number of scripts where students did not attempt Q05 and QO06, thereby missing an
opportunity to access some marks. There are partial marks that could be awarded in each question.
Students are reminded to attempt all the questions on the paper.

Readability

It is not necessary to comment every line of code in a solution. Some examples were seen where the
number of comments exceeded the number of code lines. Comments are to help understand the
logic, so should be placed, more helpfully, at the start of blocks of code. Excessive commenting
makes the response difficult to read.

White space also can help with readability, but there is no requirement to double space code. Use
white space between blocks of logic. Single spacing is appropriate for code.

Execute and test the code

In early questions, where precise instructions are given, students should attempt to run their code.
Students were seen to have created the correct code line, but not used the correct indentation level.
This made the code crash.

Spelling errors were also seen, which means that the code will not give the correct output. Students
could find and correct these simple errors by running the code.

In the Parson’s problem, the code should be executed with the test data given in the question paper.
Execution would quickly identify that some lines were still out of order.

Q1 — Complete the code

Solutions required completion of the provided lines or adding new lines of Python code to the given
file.

The majority of students submitted good responses.

Fewer marks were awarded to responses that demonstrated deleting, rewriting, or rearranging
sections of the supplied code.

Some responses demonstrated an inaccurate use of relational and logical operators.

Some responses used commas to join the strings on line 25. The use of commas to join strings
produces a tuple of strings, not a single string. The print () function will accept a tuple of strings
and display them one after another.

Valid range checks for the input numbers were awarded for those that excluded the values of 5 and
30 and those that included the values of 5 and 30.

Q1 Example 1

T # -
2 # Global variables

3
4 decimalCode = &0

5

6 # =====> Add a line to create an integer wvariable named 'num' and

T # set it to O

2 int([num])

9 num = 0

0 # -
11 # Main program

22 ¢4 -
13 # =====> Complete the line to take the input from the user and

14 # # convert it to an integer

15 input(int)

17 # =====> Complete the if statement to check that the inputted number
18 # iz between 5 and 30.

19 +# Use two relational operators and one logical operator
20 if ((5),(30)):
21 # =====> Complete the line to add 60 to num and assign the
22 # result to the wvariable decimalCode
23 decimalCode = (60+num)
£
25 # =====> Complete the line to join strings together with concatenation
26 print(str(num) (" is =equal to ") (chr(decimalCode))
27 else:
28 print("error")
29 # =====> Add a line to display an error message

This question was awarded five marks. It is a good example demonstrating understanding of the
fundamental concepts of data types, arithmetic, assignment, and input and output.

Q1 Example 2

0 =] Oy 7 b W P =

Lo

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Global variables

decimalCode = &0

=====> Add a line to create an integer variable named 'num' and

set it to O

num = 0

Main program

=====> Complete the line to take the input from the user and

* # convert it to an integer

num = int(input("Please enter a number.")

=====> Complete the if statement to check that the inputted number
is between 5 and 30.
Use two relational operators and one logical operator

if (num < 5) or (num > 30):

=====> Complete the line to add 60 to num and assign the
result to the wvariable decimalCode
decimalCode = num + 60
=====> Complete the line to join strings together with concatenation
print (str (num), " is equal to ", chr (decimalCode))
else:
=====> Add a line to display an error message

print ("Number has no assigned character.")

This response was awarded six marks. It includes a correct conversion between data types, in
addition to the fundamental understanding of input and output.

Q02 — Fix the errors

Solutions required students to identify a data type, fix syntax errors, fix logic errors, and add code to
produce the required functionality. This question is set in the context of turtle graphics.

The majority of students submitted good responses.

The most frequently lost mark was the comment required to identify the understanding of a string
data type. Fixing the syntax errors were the most commonly awarded marks. Fixing the logic errors
were the least commonly awarded marks.

Responses that used the variable theTurt1le when adding the required new lines of code,
received full marks. Those that used the default turtle, turtle, could not access all the available
marks.

Q2 Example 1
S

Import libraries

L [

~] O O W

[
Do W
= -
[l
= g
o =
jasjgasi
H

Il
]

fas]
oy O
=

BIG = 8§

I t t
L B}

Main program

Setup the turtle environment

=====> Add a comment to identify the data type of the argument

to the turtle.mode () subprogram

turtle.mode = str('standard')

screen = turtle.Screen ()

t t t t
~] &y 0 e

[(Nalues]

b DD D
[OSI

=====> Fix the NameError
screen.setup (WIDTH, HEIGHT)
turtle.screensize (WIDTH, HEIGHT)

J NN

Prepare the turtle

=====> Fix the AttributeError

theTurtle = turtle.Turtle () # Create a turtle
theTurtle.penup ()

2 M N
~] O O W

[
=H=

o

3oWD 00

Draw grid lines
theTurtle.setpos (-200, 0)
theTurtle.setheading (0)

L [

=====> Fix the TypeError
theTurtle.pendown ()
theTurtle.forward (400)
theTurtle.penup ()

W oo W oW W W W W W w b
~] &y 0 e .

[(Nalues]

Oy Oy Ony Oy Oy DO
[1 =S OPW T N T e T W o s R s A o Y

o
o

o
N

67
68
69
70
71
12
713
74
75
16
17
78
79
80
81
82

====> Fix the logic error that causes the wvertical axis to be
too far right

theTurtle.setpos (0, 200)

theTurtle.setheading (270)

theTurtle.pendown ()

=====> Fix the logic error that causes the vertical axis
to be drawn too short
theTurtle. forward (400)

theTurtle.penup ()

Draw a square

theTurtle.setpos (-200, -200) # Lower left
=====> Fix the logic error that makes the outside square
tilt left of the wvertical axis
theTurtle.setheading (90) # Point north
theTurtle.pendown ()
for count in range (4):

theTurtle. forward (400) # Side

theTurtle.right (90) # Turn
theTurtle.penup ()
Draw a circle
theTurtle.setpos (100, 0) # Right side of circle
theTurtle.setheading (90) # Point north
====> Add a line to set the size of the pen to the constant BIG
turtle.pensize ("BIG")

=====> Add a line to set the colour of the pen to gold
turtle.pencolor ("gold")

theTurtle.pendown ()
theTurtle.circle (100) # Radius of 100
theTurtle.penup ()

=====> Add a line to hide the turtle
turtle.hideturtle ()

print ("Be sure to close the turtle window.")
turtle.done ()

This response was awarded seven marks. This is a good example showing correction of the three
runtime errors and the three logic errors.

Q2 Example 2
] # ___

0~ &y U0 = Ll b =

L=

WIDTH = 800
HEIGHT = 600
BIG = 8

w N = O
H=

'_.
.
H=
=
o
(R
]
s]
=
(o]
(U]
=
w
=

==
~ o i
S TS

W

m

o

o

o]

o

=

™

o+

bt

R

o

'_l

1]

1]

=t

<

(R

H

o]

=t

3

1]

=t

=

=====> Add a comment to identify the data type of the argument
to the turtle.mode () subprogram

turtle.mode ("standard™)

screen = turtle.Screen|()

NSRS SR
N = O W W
+= =

=====> Fix the NameError
screen.setup (WIDTH, HEIGHT)
turtle.screensize (WIDTH, HEIGHT)

[N RN I LS I
oy ol L)

Prepare the turtle

=====> Fix the AttributeError

theTurtle = turtle.Turtle () # Create a turtle
theTurtle.penup ()

(W WE I L B L I AN
= O W 00 =]
=

Draw grid lines
theTurtle.setpos (-200, 0)
theTurtle.setheading (0)

[N VNI W R N
ool L

=====> Fix the TypeError
theTurtle.pendown ()
theTurtle. forward (400)
theTurtle.penup ()

o wow
WO 00 =]

[0 T 6 T O
[V I s RS I VIS o T

oy O Oy O
= W= O

o
o

oy
2

67
68
69
70
71
12
13
T4
15
76
17
18
19
80
81

====> Fix the logic error that causes the vertical axis to be
too far right

theTurtle.setpos (400, 200)

theTurtle.setheading (270)

theTurtle.pendown ()

=====> Fix the logic error that causes the vertical axis
to be drawn too short
theTurtle.forward (100)

theTurtle.penup ()

Draw a square

theTurtle.setpos (-200, -200) # Lower left
=====> Fix the logic error that makes the outside square
tilt left of the wvertical axis
theTurtle.setheading (90) # Point north
theTurtle.pendown ()
for count in range (4):
theTurtle.forward (400) # Side
theTurtle.right (90) # Turn
theTurtle.penup ()
Draw a circle
theTurtle.setpos (100, 0) # Right side of circle
theTurtle.setheading (90) # Point north
====> Add a line to set the size of the pen to the constant BIG
theTurtle.pensize(5)

=====> Add a line to set the colour of the pen to gold
theTurtle.pencolor ("gold")

theTurtle.pendown ()

theTurtle.circle (100) # Radius of 100
theTurtle.penup ()

=====> Add a line to hide the turtle
theTurtle.hideturtle()

print ("Be sure to close the turtle window.")
turtle.done ()

This example was awarded six marks. Again, the runtime errors have been corrected. In addition,
the colour of the pen is changed and the correct turtle is hidden.

Q03

Solutions required completion of the given code or adding new lines of Python code to the given file.
The majority of students submitted good responses.

Fewer marks were awarded to responses that demonstrated deleting, rewriting, or rearranging
sections of the supplied code.

The most frequent error was initialisation of the variable for the area of a circle to an integer value,
rather than a real value, with a decimal.

Again, errors were seen in the use of relational operators.

The marks in the levels-based mark scheme for functionality were awarded based on the translation,
execution, and accurate outputs produced by the response.

10

Q3 Example 1

1

L O w S s R O (Y S Y i

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

s -
Import libraries

. -
=====> Add a line to import the math library

import math

s
Global wvariables
o
squarehrea = 0
excesshArea = 0.0
side = 0
radius = 0
diameter = 0
=====> Set the wvariable with a wvalue of the correct data tvype
E for the area of the circle
circleArea = 0
s
Main program
-
side = int {input ("Enter the length of a side for the sguare: "))
radius = int {input ("Enter the radius of the circle: ™))
=====> Add a line to calculate the diameter of the circle
diameter = 2 * radius
=====> Complete the selection statement to check that circle
- will fit inside the square
if (diameter > side):
print ("Invalid input"™)
else:
=====> Add a line to calculate the area of the outside sguare
squarehrea= side¥*2
$# =====>» Add a line to calculate the area of the circle using
= exponentiation, i.e. raising a number to a power
circleArea = math.pli * radius**2
=====> Add a line to calculate the area of excess card
excessArea = squarelArea — circlelArea

Ll

print ("Excess area is , excesshrea)

This response was awarded eight marks. Itis a very good example that demonstrates the skills of
code construction. However, as indicated above, the indentation has introduced inaccurate
behaviours.

11

Q3 Example 2

=
I s U o S s T 3 Y S S T A T

20
21
22
23
24
25
26
27
28
el
30
FHil
32
33
34
35
36
317
38
39
40
41
42
43
==

.
Import libraries
L
$# =====>» Add a line to import the math library

import math

squarehrea = 0

excesshrea = 0.0
side = 0
radius =
diameter

I =
=

=====> Set the wvariable with a wvalue of the correct data type
= for the area of the circle
circleArea = 0.0

side = int {(input ("Enter the length of a side for the sguare: "))
radius = int {input ("Enter the radius of the circle: "))

=====> Add a line to calculate the diameter of the circle
diameter = radius * 2

=====> Complete the selection statement to check that circle

= will fit inside the sguare

if (diameter »= side):
print ("Invalid input™)

else:
=====> Add a line to calculate the area of the outside sguare
sgaureirea = side**Z

=====> Add a line to calculate the area of the circle using
- exponentiation, i.e. raising a number to a power
circleArea = radius**2 * math.pi ()

=====>» Add a line to calculate the area ofexcess card
excessArea = squareArea - clrcleArea

n

print ("Excess area is , excessArea)

This response was awarded seven marks. It is a good example demonstrating skills in constructing
individual lines of code. However, the solution either crashes or the outputs do not meet
requirements.

12

Q04 — Parsons problem

This question required reordering of the provided code lines to create a functional program that
converted binary patterns to unsigned integer values. The lines of code were presented as a
subprogram and a main program. The levels of indentation for each line were correct in the given
code file.

Many responses were seen that achieved full marks on this question.

Some responses changed the levels of indentation for the supplied lines. Doing this means that the
response will not execute as designed. As a result, those responses could not access the last two
mark points, which were based on the functionality of the final result.

Where there was no vertical movement in a section, subprogram or main program, no marks could
be awarded.

Q04 Example 1

1 -

2 # Global variables

S fF -
layout = "{} i= "

g # ——m—mm—FMmmH - -k -k k-
Subprograms
0 # --—
11 def binarylLoop (pBinary):
12 total = total + wvalue
3 for index in range (len (pBinary) - 1, -1, -1):
14 total = 0
15 digit = pBinary[index]
16 return (total)
17 value = 0
18 multiplier = 1
19 value = multiplier * int (digit)
20 digit = ""
21 multiplier = multiplier * 2
22 # End of mixed up lines
3

2 $ -
25 # Main program

26 F
27 # =====> Rearrange the mixed up lines

28 binary = input ("Enter a binary number (er ")

29 binary = input ("Enter ' Y ittern))

30 while (binary '= ""):

31 print (layout.format (binary, denary))

32 denary = binaryLoop (binary)

33

34 # End of mixed up lines

This response was awarded four marks. Reordering of the lines has been attempted and there are
no indentation errors introduced. This response demonstrates, even in high-tariff questions, there
are opportunities to earn marks.

13

Q04 Example 2

1

= Ll B

(W I ws BECA e S &

[Sr W -
B W= o

=] om0

1)

B

=
LI e

o

= L) [= O

D WO O =] &

[P S T P T % T W T G T T N T 6 T T NG T S T S T
B L) B = O

35

Global wvariables

layout = "{} is "

binary = ""

def binaryLoop (pBinary):
=====> Rearrange the mixed up lines
while (binary !'= ""):
total = 0
value = 0
multiplier = 1
digit = ""
for index in range (len (pBinary) - 1, -1, -1):
digit = pBinary[index]
value = multiplier * int (digit)
multiplier = multiplier * 2
total = total + wvalue
return (total)
End of mixed up lines

=====> Rearrange the mixed up lines
binary = input ("Enter a binary number (empty to exit): ")
binary = input ("Enter a binary pattern (empty to exit): ")
denary = binaryLoop (binary)

print (layout.format (binary, denary))

End of mixed up lines

This response was awarded 11 marks. The majority of the given lines have been ordered correctly
and there are no indentation errors. Although the response does execute, the outputs do not meet
requirements.

14

QOS5 — Writing a file
This question required responses that opened a file, wrote records from an internal data structure to
that file, and then closed the file.

There were many creative responses to this problem, some of which achieved full marks.

The levels-based mark schemes for design and functionality provided students with opportunities to
be rewarded for their approaches to the solution, independently of its functionality.

Simple design approaches, such as iterating across the array, building an output string of seven
columns, and then writing that string to the file were seen. They often achieved full marks.

Other solutions included slicing the data structure into a sequence of lists, converting the lists to
strings, and writing them to the file. These solutions often did not handle the commas correctly, as
the conversion from a list to a string introduced spaces as well as commas and square brackets.

Two common errors included the use of the constants provided in the file. The file name constant
was used inaccurately for the file open instruction. The constant controlling for the seven columns
was either not used or used in combinations with a hard-coded seven.

Although the modulus function was not required in the solution, many responses included it in the
calculation for determining when a line feed was needed in the output.

15

Q5 Example 1

1

=L DD

[I V' B & R s AR S

N
WMo

e T 1=

[S T T]
= O w o

= L D

W oo = oy 0

o oW NN N MNNMNNN
=N = O

5]
o

36

Constants

OUTPUT _FILE = "QO05 OUTPUT.TXT"
MA¥X PER LINE = 7

Global wvariables

weightsUsed = [3.79, 4.16, 1.52, 3.66, 2.58, 4.93, 4.37, 2.95, 2.58,
4.37, 4.59, 2.6l1, ©.13, 4.49, 1.66, 2.65, 4.64, 4.72,
3.59, 4.56, 4.23, 2.15, 4.03, 2.47, 4.61, 4.55, .31,
5.81, 2.63, 3.6l1, 3.49, 4.49, 3.02, 3.86, 6.26, 3.11,
1.79, 2.e2, 2.23, 2.34, L.e6e, 4.58, 3.52, 1.53, 2.07,
3.89, 3.48, 5.52, ©.38, 3.77, 1.74, 1.78, 3.87, 3.45,
3.79, 3.36, 1.87, 2.12, 2.09, 2.84, 2.29, 4.46, 3.63]
=====> Write your code here
index = 0

Main program

=====> Open the output file
OUTPUT_FILE = open("Q05 OUTPUT.TXT","w")#opens text file in write mode
=====> Process each item in the data structure
for item in weightsUsed: #goes through array values
if index ==
OUTPUT FILE.write(str(item)) #if 7 values have been written
OUTPUT FILE.write("\n") #goes to next line down
index = 0 #resets index to 0
else:
OUTPUT FILE.write(str(item)) #writesvalue to file
OUTPUT FILE.write(",") #splits with comma
index += 1
=====> Close the output file

OUTPUT FILE.close()

This response was awarded 13 marks. This is a good response that demonstrates logical and
coherent solution design, dealing with the requirement for seven columns per line. The solution is
functional and the outputs meet the requirements set out in the question paper.

16

Q5 Example 2
N # ___

1

2
3
-
5
6
;

(s

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Constants

Global wvariables

weightsUsed = [3.79, 4.16, 1.52, 3.66, 2.58, 4.98, 4.37, 2.95, 2.58,
4.37, 4.59, 2.61, €.13, 4.49, 1.66, 2.65, 4.64, 4.72,
3.59, 4.56, 4.23, 2.15, 4.03, 2.47, 4.61, 4.55, 6€.31,
5.81, 2.63, 3.61, 3.49, 4.49, 3.02, 3.86, 6.26, 3.11,
1.79, 2.62, 2.23, 2.34, 5.66, 4.58, 3.52, 1.53, 2.07,
3.89, 3.48, 5.52, €.38, 3.77, 1.74, 1.78, 3.87, 3.45,
3.79, 3.36, 1.87, 2.12, 2.09, 2.84, 2.29, 4.46, 3.63]

=====> Write your code here

Main program

=====> Open the output file

Open file in write mode

myFile = open(OUTPUT FILE, "w'")

=====> Process each item in the data structure

counter = 1

for value in weightsUsed: # =====> Make each line seven items long

if counter % MAX PER LINE ==
myFile.write(str(value))
myFile.write('\n")

else:
myFile.write(str(value))
myFile.write(str (', "))

counter += 1

=====> Close the output file
myFile.close()

This response was awarded 15 marks. In this response, the constants have been used correctly. Itis
another good example of solution decomposition and functionality.

17

Q5 Example 3

2

WD 00 =] o L0 W

=
o =

= L

n

8

=1 N

[wa]

=
o

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Constants

A

OUTPUT_FILE = "Q0S5 OUTPUT.TXT"
MAX PER LINE = 7

Global wariables

weightsUsed = [3.79%, 4.16, 1.52, 3.66, 2.58, 4.98, 4.37, 2.95, 2.58,
4.37, 4.59, 2.61, 6.13, 4.49, 1.66, 2.65, 4.64, 4.72,
3.59, 4.56, 4.23, 2.15, 4.03, 2.47, 4.61, 4.55, 6.31,
5.81, 2.63, 3.61, 3.49, 4.49, 3.02, 3.86, 6.26, 3.11,
1.79, 2.62, 2.23, 2.34, 5.66, 4.58, 3.52, 1.53, 2.07,
3.89, 3.48, 5.52, 6.38, 3.77, 1.74, 1.78, 3.87, 3.45,
3.79, 3.36, 1.87, 2.12, 2.09, 2.84, 2.29, 4.46, 3.63]

=====> Write your code here

= 0 #Variable to store the starting index of a section of the list
fin = 0 #vVariable to store the finishing index of a section of the list

Main program

=====> Open the output file

outputFile = open (OUTPUT FILE, "w") #0pens the file

=====> Process each item in the data structure

X = int((len({weightsUsed) /7)) #Sets 'x' to the length of the list weightsUsed

for i in range (x): #Repeats the following code x times (63/7 = 9 times)
fin = fin + MAX PER LINE #Rdds 7 to the finishing index of a section of th
string = str (weightsUsed[start:fin]) #Creates a string containing the ite
stringb = string.strip('[')

stringec = stringb.strip('1") #5trips the string to remove the sguare brac

OutputFile.writelines(stringc) #Writes the string containing 7 weights to
outputFile.writelines(''\n'") #5tarts a neew line in the outputFile.txt fil

start = start + MAX PER LINE #ARdds 7 to the start index value so that the
=====> Close the output file

OutputFile.close() #File closed

This response was awarded 13 marks. This is a good example demonstrating the use of slicing and
conversion of a list to a string for outputting. However, the conversion has introduced a space after
the commas, so it is not fully functional.

18

Q5E
1

B s S BT = T L

]

Lo

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
a0
31
32
33
34
35
36

This response earned five marks. This response opens and closes a file, so does have some

. 631

xample 4

Constants

OUTEPUT FILE = "QCE_OL—TPCT. THT"
MREX PER LINE = 7

Global wvariables

weightsUsed = [3.7%, 4.16, 1.52, 3.66, 2.58, 4.93, 4.37, 2.95,

4.37, 4.59, 2.61, 6.13, 4.49, 1.66, 2.65, 4.64,

3.59, 4.56, 4.23, 2.15, 4.03, 2.47, 4.61, 4.55,

5.81, 2.63, 3.61, 3.49, 4.49, 3.02, 3.86, 6.26,

1.79, 2.62, 2.23, 2.34, 5.66, 4.53, 3.52, 1.53,

3.89, 3.48, 5.52, 6.38, 3.77, 1.74, 1.78, 3.87,

3.79, 3.36, 1.87, 2.12, 2.09, 2.84, 2.29, 4.46,
=====> Write your code here

Main program

$# =====> Open the output file
file = open(OUTPUT FILE,"r") # opening the file
=====> Process each item in the data structure

welghts = file.readline() #reading each value in the textfile

index = 0

for weightsUsed in range (MAX PER LINE): # to print out 7 values of dif

index = index + 1
print(weights[-1 + index])

=====> Close the output file
file.close() # closing the file

functionality.

19

Q06 — 2D linear search

Many responses were able to search the data structure for an identified word, but were not able to
identify when a location was passed over or if the item was not in the data structure.

Some responses included mechanisms for correctly tracking the suggested word, although many
tried to just suggest the next word along, with no consideration if it was outside the end of the array.
This led to runtime errors. Conversely, other responses always suggested the last word in the array,
regardless if it were the correct suggestion.

There were some examples of confusion with string comparisons. Some responses attempted to
compare the target word with the tile word, letter by letter, rather than with a simple relational
operator over the entire two-letter string. Most of these attempts did not work successfully.

The levels-based mark scheme for design is included in this question. This mark scheme takes into
consideration the number of compares in loop passes. Some responses that correctly used a loop to
process the data, used a selection to check if the item was the last in the list, as well. Other
responses used an iterative loop and processed every item in the data, ignoring the requirements for
an early exit.

The levels-based mark scheme for programming practice is included in this question. The majority of
responses received two of these marks. A few responses missed out on the third mark because of
the excessive amounts of comments. For a band three, the response should include effective
commenting used to explain logic of code blocks and code that is clear, with good use of white space
to aid readability. Excessive commenting makes the code less readable, rather than more readable.

Q6 Example 1

2 $ =====> Write your code here
28 userWord = ""

2% count = 0

30 finished = False

=====> Write your code here
userWord = input("Please input a two letter word:") #inputs word
38 wuserWord = userWord.upper () #converts to upper
40 count = -1
41 for group in wordTable: ¢for each item in the list
42 if finished == False:
43 count = count + 1
44 if group[0] == userWord:
45 print("Your word was",userWord,"and yvour score was",wordTable[count][1]) #if
46 finished = True
47 elif userWord<group[O]:
48 print("The location of your word was passed and it is not in the list. Wha
49 wordTable [count] [0],"which will score",wordTable[count] [1],"points?"
50 finished = True
51 #else:
5 #print ("Word is not in list. What about™,wordTable[len(wordTable)][0],"which wil

This response was awarded 11 marks. This is a good example demonstrating locating the target in
the list and identifying if the target location was passed over. The requirement for an early exit has
not been met.

20

Q6 Example 2

27 # =====> Write your code here

28 score = 0 #Global Variable for word score set to 0

25 walid = 0 #Global Variable for user word wvalidation set to 0

30 #

31 # Main program

32 ¢

33 # =====> Write your code here

34

35 while valid == 0: #Loops the user word input until walid not egual to 0

36

37 word = input ('Please enter a 2 letter word (using letters in the English alphabet): '} #User
38

39 if word.isalpha() and len(word) == 2: #Checks the user input againt the requirements

40 valid = 1 #If all requirements are met then the while loop is broken

41 else:

42 print ('Invalid rd.\n") #Tells the user the input is invalid

43

44 word = word.upper() #Ensures the word is in uppercase

46

47 for i in range(len(wordTable)): #Loops the following linear search code for the length of the wor
48

49 if word == (wordTable[i])[0]: #Checks the user's word against the word part of each list with
50 score = (wordTable[il)[1] #When the gword is located, the score variable is set to the wo
51 print ('The word',word,'was found! You - d',score, 'points!') #The user is informed of
52 print('The next word is', (wordTable[i+1])[0], 'which s s', (wordTable [i4+1]) [1], 'points! ")
e}

54

55 print ('The last word is', (wordTable[-11)[0],'which sc , (wordTable[-11) [1], 'points!") #The la
56

This response was awarded eight marks. This is a good attempt at solving an unseen problem. The

response demonstrates a loop and comparison for matching items, as required in a solution. As

validation of input was not a requirement of the solution, no marks were awarded for lines 35 to 42,

whether or not they function correctly.

21

Q6 Example 3

34 # wariable declaration

35 score = 0

36 itemFound = False

27 suggestedWord = "

28 potentialScore = 0

39

40 # prompt for word input

41 word = input{"Enter a two letter word:\n") .upper /()
42

43 # walidation

44 if (len(word) == 2) and (word.isalpha()):

45

46 # iterate through the table

47 for 1 in range (len(wordTable)):

48

45 # check if found

50 if wordTable[1][0] == word:

51

52 # update score and break if found
53 score = wordTable[i][1]

54 itemFound = True

55 break

56

57 # break if word passed

58 elif word < wordTable[i][0]:

59 suggestedWord = wordTable[i] [0]
&0 potentialScore = wordTable[i][11]
6l break

62

63 # suggest last word if at end of list
o4 elif (i + 1) = len(wordTable):

65 suggestedWord = wordTable[-1][0]
(515 potentialScore = wordTable[-1]1[1]
&7

&8 # output if found

69 if itemFound == True:

T0 print{f"Your word was '{word}' and it scored {score} points.™)
[

72 # output suggestion if not found

13 else:

74 print{f"If you had said '{suggestedWord}', a suggested word, "
75 f"it would have scored {potentialScore} points.™)
76

77 # result of walidation not passed

T8 else:

79 print{"Invalid input™)

This response was awarded 15 marks. This is a good example of a well-designed, coded, and
functional solution. The validation on line 44 is not required. Comments have been used to explain
the logic, but are not excessive.

22

Q6 Example 4

27 word =

3(# =====» Write your code here

31 word = input("Enter a two-1 rord: ") #user input for the two letter word

32 word = word.upper() #capitalises the word

34 B

38 # Mailn program

36 F e

3 # =====> Write your code here

38 for num in range(l, len(wordTable)): #for loop

3¢ if word == wordTable[num] [0]:

41 print(f"Your tile, {wordTable[num][(0]}, is worth {wordTable[num][1]} points!")

41 wordTable.remove (wordTable [num]) #remcves the tile that the user chose from the list

42 break
3 else:

44 print(f"Your number is not in the list. I suggest using the tile, {wordTable[-1]1([0]} "
5 f"which is worh {wordTable[-1][1]} points!"™)

46 break

47

This response was awarded five marks. It demonstrates the use of a loop and selection, as required
in a solution. Although the solution is not functional, it demonstrates that marks can be earned by
attempting a solution.

Summary
Students should:

e Attempt every question in the paper.

e Follow the instructions in the paper and do not rewrite the supplied code.

e Remove all the syntax errors from ode so that it will translate.

e Execute and test code with the data supplied in the question.

o Use effective, but not excessive, commenting and white space to make the program logic
clear.

23

